Loading…
Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity
We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.
Saved in:
Published in: | International journal of mathematics and mathematical sciences 2020, Vol.2020 (2020), p.1-9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3 |
container_end_page | 9 |
container_issue | 2020 |
container_start_page | 1 |
container_title | International journal of mathematics and mathematical sciences |
container_volume | 2020 |
creator | Fundikwa, Blessings T. Mukwembi, Simon Mazorodze, Jaya P. |
description | We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp. |
doi_str_mv | 10.1155/2020/8982474 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8c2e4264b5b14bbc81e8c5199ce21a52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8c2e4264b5b14bbc81e8c5199ce21a52</doaj_id><sourcerecordid>2442158622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3</originalsourceid><addsrcrecordid>eNqFkc1v1DAUxC0EEkvhxhlZ4ghp_Rw7sY906ZdUCQ7t2fLHy65X2zjY3lb978mSCo6cRhr9NPOehpCPwE4BpDzjjLMzpRUXvXhFVtCpvmGCy9dkxaCDBnrgb8m7UnaMgeJcrki4nybM9DwdxlBoGmndIv0e7QPW2U4DPY-TzTVWpHYM9C5HO2722FxmRHqV7bQt9CnWLf2ZsfgcHQZ6ETZI12kc0df4GOvze_JmsPuCH170hNxfXtytr5vbH1c362-3jRe8qw3vhBCaea697QMA6wceVK-D1-BkmMUNyirtPaISMgxKu2Db0GJomYPQnpCbJTckuzNTjg82P5tko_ljpLwxx1_8Ho3yHOdS4aQD4ZxXgMpL0NojByv5nPV5yZpy-nXAUs0uHfI4n2-4EByk6viR-rpQPqdSMg5_W4GZ4ybmuIl52WTGvyz4No7BPsX_0Z8WGmcGB_uPhp73TLe_AW07lVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442158622</pqid></control><display><type>article</type><title>Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Fundikwa, Blessings T. ; Mukwembi, Simon ; Mazorodze, Jaya P.</creator><contributor>Hussain, N.</contributor><creatorcontrib>Fundikwa, Blessings T. ; Mukwembi, Simon ; Mazorodze, Jaya P. ; Hussain, N.</creatorcontrib><description>We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/2020/8982474</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Connectivity ; Graphs ; Inequality ; Upper bounds</subject><ispartof>International journal of mathematics and mathematical sciences, 2020, Vol.2020 (2020), p.1-9</ispartof><rights>Copyright © 2020 Blessings T. Fundikwa et al.</rights><rights>Copyright © 2020 Blessings T. Fundikwa et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3</citedby><cites>FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3</cites><orcidid>0000-0002-0836-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2442158622/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2442158622?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Hussain, N.</contributor><creatorcontrib>Fundikwa, Blessings T.</creatorcontrib><creatorcontrib>Mukwembi, Simon</creatorcontrib><creatorcontrib>Mazorodze, Jaya P.</creatorcontrib><title>Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity</title><title>International journal of mathematics and mathematical sciences</title><description>We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.</description><subject>Connectivity</subject><subject>Graphs</subject><subject>Inequality</subject><subject>Upper bounds</subject><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1v1DAUxC0EEkvhxhlZ4ghp_Rw7sY906ZdUCQ7t2fLHy65X2zjY3lb978mSCo6cRhr9NPOehpCPwE4BpDzjjLMzpRUXvXhFVtCpvmGCy9dkxaCDBnrgb8m7UnaMgeJcrki4nybM9DwdxlBoGmndIv0e7QPW2U4DPY-TzTVWpHYM9C5HO2722FxmRHqV7bQt9CnWLf2ZsfgcHQZ6ETZI12kc0df4GOvze_JmsPuCH170hNxfXtytr5vbH1c362-3jRe8qw3vhBCaea697QMA6wceVK-D1-BkmMUNyirtPaISMgxKu2Db0GJomYPQnpCbJTckuzNTjg82P5tko_ljpLwxx1_8Ho3yHOdS4aQD4ZxXgMpL0NojByv5nPV5yZpy-nXAUs0uHfI4n2-4EByk6viR-rpQPqdSMg5_W4GZ4ybmuIl52WTGvyz4No7BPsX_0Z8WGmcGB_uPhp73TLe_AW07lVA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fundikwa, Blessings T.</creator><creator>Mukwembi, Simon</creator><creator>Mazorodze, Jaya P.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0836-0874</orcidid></search><sort><creationdate>2020</creationdate><title>Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity</title><author>Fundikwa, Blessings T. ; Mukwembi, Simon ; Mazorodze, Jaya P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Connectivity</topic><topic>Graphs</topic><topic>Inequality</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fundikwa, Blessings T.</creatorcontrib><creatorcontrib>Mukwembi, Simon</creatorcontrib><creatorcontrib>Mazorodze, Jaya P.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fundikwa, Blessings T.</au><au>Mukwembi, Simon</au><au>Mazorodze, Jaya P.</au><au>Hussain, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8982474</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0836-0874</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0161-1712 |
ispartof | International journal of mathematics and mathematical sciences, 2020, Vol.2020 (2020), p.1-9 |
issn | 0161-1712 1687-0425 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8c2e4264b5b14bbc81e8c5199ce21a52 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Connectivity Graphs Inequality Upper bounds |
title | Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20on%20the%20Diameter%20of%20Bipartite%20and%20Triangle-Free%20Graphs%20with%20Prescribed%20Edge%20Connectivity&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Fundikwa,%20Blessings%20T.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/2020/8982474&rft_dat=%3Cproquest_doaj_%3E2442158622%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442158622&rft_id=info:pmid/&rfr_iscdi=true |