Loading…

Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity

We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.

Saved in:
Bibliographic Details
Published in:International journal of mathematics and mathematical sciences 2020, Vol.2020 (2020), p.1-9
Main Authors: Fundikwa, Blessings T., Mukwembi, Simon, Mazorodze, Jaya P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3
cites cdi_FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3
container_end_page 9
container_issue 2020
container_start_page 1
container_title International journal of mathematics and mathematical sciences
container_volume 2020
creator Fundikwa, Blessings T.
Mukwembi, Simon
Mazorodze, Jaya P.
description We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.
doi_str_mv 10.1155/2020/8982474
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8c2e4264b5b14bbc81e8c5199ce21a52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8c2e4264b5b14bbc81e8c5199ce21a52</doaj_id><sourcerecordid>2442158622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3</originalsourceid><addsrcrecordid>eNqFkc1v1DAUxC0EEkvhxhlZ4ghp_Rw7sY906ZdUCQ7t2fLHy65X2zjY3lb978mSCo6cRhr9NPOehpCPwE4BpDzjjLMzpRUXvXhFVtCpvmGCy9dkxaCDBnrgb8m7UnaMgeJcrki4nybM9DwdxlBoGmndIv0e7QPW2U4DPY-TzTVWpHYM9C5HO2722FxmRHqV7bQt9CnWLf2ZsfgcHQZ6ETZI12kc0df4GOvze_JmsPuCH170hNxfXtytr5vbH1c362-3jRe8qw3vhBCaea697QMA6wceVK-D1-BkmMUNyirtPaISMgxKu2Db0GJomYPQnpCbJTckuzNTjg82P5tko_ljpLwxx1_8Ho3yHOdS4aQD4ZxXgMpL0NojByv5nPV5yZpy-nXAUs0uHfI4n2-4EByk6viR-rpQPqdSMg5_W4GZ4ybmuIl52WTGvyz4No7BPsX_0Z8WGmcGB_uPhp73TLe_AW07lVA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2442158622</pqid></control><display><type>article</type><title>Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Fundikwa, Blessings T. ; Mukwembi, Simon ; Mazorodze, Jaya P.</creator><contributor>Hussain, N.</contributor><creatorcontrib>Fundikwa, Blessings T. ; Mukwembi, Simon ; Mazorodze, Jaya P. ; Hussain, N.</creatorcontrib><description>We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/2020/8982474</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Connectivity ; Graphs ; Inequality ; Upper bounds</subject><ispartof>International journal of mathematics and mathematical sciences, 2020, Vol.2020 (2020), p.1-9</ispartof><rights>Copyright © 2020 Blessings T. Fundikwa et al.</rights><rights>Copyright © 2020 Blessings T. Fundikwa et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3</citedby><cites>FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3</cites><orcidid>0000-0002-0836-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2442158622/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2442158622?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Hussain, N.</contributor><creatorcontrib>Fundikwa, Blessings T.</creatorcontrib><creatorcontrib>Mukwembi, Simon</creatorcontrib><creatorcontrib>Mazorodze, Jaya P.</creatorcontrib><title>Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity</title><title>International journal of mathematics and mathematical sciences</title><description>We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.</description><subject>Connectivity</subject><subject>Graphs</subject><subject>Inequality</subject><subject>Upper bounds</subject><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1v1DAUxC0EEkvhxhlZ4ghp_Rw7sY906ZdUCQ7t2fLHy65X2zjY3lb978mSCo6cRhr9NPOehpCPwE4BpDzjjLMzpRUXvXhFVtCpvmGCy9dkxaCDBnrgb8m7UnaMgeJcrki4nybM9DwdxlBoGmndIv0e7QPW2U4DPY-TzTVWpHYM9C5HO2722FxmRHqV7bQt9CnWLf2ZsfgcHQZ6ETZI12kc0df4GOvze_JmsPuCH170hNxfXtytr5vbH1c362-3jRe8qw3vhBCaea697QMA6wceVK-D1-BkmMUNyirtPaISMgxKu2Db0GJomYPQnpCbJTckuzNTjg82P5tko_ljpLwxx1_8Ho3yHOdS4aQD4ZxXgMpL0NojByv5nPV5yZpy-nXAUs0uHfI4n2-4EByk6viR-rpQPqdSMg5_W4GZ4ybmuIl52WTGvyz4No7BPsX_0Z8WGmcGB_uPhp73TLe_AW07lVA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fundikwa, Blessings T.</creator><creator>Mukwembi, Simon</creator><creator>Mazorodze, Jaya P.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0836-0874</orcidid></search><sort><creationdate>2020</creationdate><title>Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity</title><author>Fundikwa, Blessings T. ; Mukwembi, Simon ; Mazorodze, Jaya P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Connectivity</topic><topic>Graphs</topic><topic>Inequality</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fundikwa, Blessings T.</creatorcontrib><creatorcontrib>Mukwembi, Simon</creatorcontrib><creatorcontrib>Mazorodze, Jaya P.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fundikwa, Blessings T.</au><au>Mukwembi, Simon</au><au>Mazorodze, Jaya P.</au><au>Hussain, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>We present upper bounds on the diameter of bipartite and triangle-free graphs with prescribed edge connectivity with respect to order and size. All bounds presented in this paper are asymptotically sharp.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8982474</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0836-0874</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-1712
ispartof International journal of mathematics and mathematical sciences, 2020, Vol.2020 (2020), p.1-9
issn 0161-1712
1687-0425
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8c2e4264b5b14bbc81e8c5199ce21a52
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Connectivity
Graphs
Inequality
Upper bounds
title Upper Bounds on the Diameter of Bipartite and Triangle-Free Graphs with Prescribed Edge Connectivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20on%20the%20Diameter%20of%20Bipartite%20and%20Triangle-Free%20Graphs%20with%20Prescribed%20Edge%20Connectivity&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Fundikwa,%20Blessings%20T.&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/2020/8982474&rft_dat=%3Cproquest_doaj_%3E2442158622%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-2644490c29ca7d1107f2d879dc91b5ddc9bf8a89ccee845df89bda3d3ed30b1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2442158622&rft_id=info:pmid/&rfr_iscdi=true