Loading…

Abandoned Object Detection in Video-Surveillance: Survey and Comparison

During the last few years, abandoned object detection has emerged as a hot topic in the video-surveillance community. As a consequence, a myriad of systems has been proposed for automatic monitoring of public and private places, while addressing several challenges affecting detection performance. Du...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2018-12, Vol.18 (12), p.4290
Main Authors: Luna, Elena, San Miguel, Juan Carlos, Ortego, Diego, Martínez, José María
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During the last few years, abandoned object detection has emerged as a hot topic in the video-surveillance community. As a consequence, a myriad of systems has been proposed for automatic monitoring of public and private places, while addressing several challenges affecting detection performance. Due to the complexity of these systems, researchers often address independently the different analysis stages such as foreground segmentation, stationary object detection, and abandonment validation. Despite the improvements achieved for each stage, the advances are rarely applied to the full pipeline, and therefore, the impact of each stage of improvement on the overall system performance has not been studied. In this paper, we formalize the framework employed by systems for abandoned object detection and provide an extensive review of state-of-the-art approaches for each stage. We also build a multi-configuration system allowing one to select a range of alternatives for each stage with the objective of determining the combination achieving the best performance. This multi-configuration is made available online to the research community. We perform an extensive evaluation by gathering a heterogeneous dataset from existing data. Such a dataset allows considering multiple and different scenarios, whereas presenting various challenges such as illumination changes, shadows, and a high density of moving objects, unlike existing literature focusing on a few sequences. The experimental results identify the most effective configurations and highlight design choices favoring robustness to errors. Moreover, we validated such an optimal configuration on additional datasets not previously considered. We conclude the paper by discussing open research challenges arising from the experimental comparison.
ISSN:1424-8220
1424-8220
DOI:10.3390/s18124290