Loading…

Multi-scale lidar measurements suggest miombo woodlands contain substantially more carbon than thought

Miombo woodlands are integral to livelihoods across southern Africa, biodiversity in the region, and the global carbon cycle, making accurate and precise monitoring of their state and change essential. Here, we assembled a terrestrial and airborne lidar dataset covering 50 kha of intact and degraded...

Full description

Saved in:
Bibliographic Details
Published in:Communications earth & environment 2024-07, Vol.5 (1), p.366-11, Article 366
Main Authors: Demol, Miro, Aguilar-Amuchastegui, Naikoa, Bernotaite, Gabija, Disney, Mathias, Duncanson, Laura, Elmendorp, Elise, Espejo, Andres, Furey, Allister, Hancock, Steven, Hansen, Johannes, Horsley, Harold, Langa, Sara, Liang, Mengyu, Locke, Annabel, Manjate, Virgílio, Mapanga, Francisco, Omidvar, Hamidreza, Parsons, Ashleigh, Peneva-Reed, Elitsa, Perry, Thomas, Puma Vilca, Beisit L, Rodríguez-Veiga, Pedro, Sutcliffe, Chloe, Upham, Robin, de Walque, Benoît, Burt, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Miombo woodlands are integral to livelihoods across southern Africa, biodiversity in the region, and the global carbon cycle, making accurate and precise monitoring of their state and change essential. Here, we assembled a terrestrial and airborne lidar dataset covering 50 kha of intact and degraded miombo woodlands, and generated aboveground biomass estimates with low uncertainty via direct 3D measurements of forest structure. We found 1.71 ± 0.09 TgC was stored in aboveground biomass across this landscape, between 1.5 and 2.2 times more than the 0.79–1.14 TgC estimated by conventional methods. This difference is in part owing to the systematic underestimation of large trees by allometry. If these results were extrapolated across Africa’s miombo woodlands, their carbon stock would potentially require an upward revision of approximately 3.7 PgC, implying we currently underestimate their carbon sequestration and emissions potential, and disincentivise their protection and restoration.
ISSN:2662-4435
2662-4435
DOI:10.1038/s43247-024-01448-x