Loading…
Predicting the Onset of Freezing of Gait Using EEG Dynamics
Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG from that of volun...
Saved in:
Published in: | Applied sciences 2023-01, Vol.13 (1), p.302 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-dadc64ec4653bd14003f589c1011948b6e3f520654341347f8bf67d5175d82293 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-dadc64ec4653bd14003f589c1011948b6e3f520654341347f8bf67d5175d82293 |
container_end_page | |
container_issue | 1 |
container_start_page | 302 |
container_title | Applied sciences |
container_volume | 13 |
creator | John, Alka Rachel Cao, Zehong Chen, Hsiang-Ting Martens, Kaylena Ehgoetz Georgiades, Matthew Gilat, Moran Nguyen, Hung T. Lewis, Simon J. G. Lin, Chin-Teng |
description | Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG from that of voluntary stopping. Our previous work demonstrated the neurological differences between the transition to FOG and voluntary stopping using electroencephalogram (EEG) signals. We employed a timed up-and-go (TUG) task to elicit FOG in PD patients. Some of these TUG tasks had an additional voluntary stopping component, where participants stopped walking based on verbal instruction to “stop”. The performance of the convolutional neural network (CNN) in identifying the transition to FOG from normal walking and the transition to voluntary stopping was explored. To the best of our knowledge, this work is the first study to propose a deep learning method to distinguish the transition to FOG from the transition to voluntary stop in PD patients. The models, trained on the EEG data from 17 PD patients who manifested FOG episodes, considering a short two-second transition window for FOG occurrence or voluntary stopping, achieved close to 75% classification accuracy in distinguishing transition to FOG from the transition to voluntary stopping or normal walking. Our results represent an important step toward advanced EEG-based cueing systems for smart FOG intervention, excluding the potential confounding of voluntary stopping. |
doi_str_mv | 10.3390/app13010302 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ce54b3a11cc4ffbaab8083355730156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8ce54b3a11cc4ffbaab8083355730156</doaj_id><sourcerecordid>2761121948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-dadc64ec4653bd14003f589c1011948b6e3f520654341347f8bf67d5175d82293</originalsourceid><addsrcrecordid>eNpNUEFOwzAQtBBIVNATH4jEEQW8WdtxxAmVtlSqVA70bDmOXVK1SbDTQ3k9DkWoe9md0Wh2NITcAX1ELOiT7jpAChRpdkFGGc1Figzyy7P7moxD2NI4BaAEOiLP795WtenrZpP0nzZZNcH2SeuSmbf2e2DjPdd1n6zDgKbTefJ6bPS-NuGWXDm9C3b8t2_Iejb9mLyly9V8MXlZpgYF69NKV0Ywa5jgWFbAKEXHZWGAAhRMlsJGnFHBWYyILHeydCKvOOS8kllW4A1ZnHyrVm9V5-u99kfV6lr9Eq3fKO372uysksZyVqIGMIY5V2pdSioROc9jNVxEr_uTV-fbr4MNvdq2B9_E-CrLBUA2RIqqh5PK-DYEb93_V6BqKFudlY0_0Qhtew</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761121948</pqid></control><display><type>article</type><title>Predicting the Onset of Freezing of Gait Using EEG Dynamics</title><source>Publicly Available Content Database</source><creator>John, Alka Rachel ; Cao, Zehong ; Chen, Hsiang-Ting ; Martens, Kaylena Ehgoetz ; Georgiades, Matthew ; Gilat, Moran ; Nguyen, Hung T. ; Lewis, Simon J. G. ; Lin, Chin-Teng</creator><creatorcontrib>John, Alka Rachel ; Cao, Zehong ; Chen, Hsiang-Ting ; Martens, Kaylena Ehgoetz ; Georgiades, Matthew ; Gilat, Moran ; Nguyen, Hung T. ; Lewis, Simon J. G. ; Lin, Chin-Teng</creatorcontrib><description>Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG from that of voluntary stopping. Our previous work demonstrated the neurological differences between the transition to FOG and voluntary stopping using electroencephalogram (EEG) signals. We employed a timed up-and-go (TUG) task to elicit FOG in PD patients. Some of these TUG tasks had an additional voluntary stopping component, where participants stopped walking based on verbal instruction to “stop”. The performance of the convolutional neural network (CNN) in identifying the transition to FOG from normal walking and the transition to voluntary stopping was explored. To the best of our knowledge, this work is the first study to propose a deep learning method to distinguish the transition to FOG from the transition to voluntary stop in PD patients. The models, trained on the EEG data from 17 PD patients who manifested FOG episodes, considering a short two-second transition window for FOG occurrence or voluntary stopping, achieved close to 75% classification accuracy in distinguishing transition to FOG from the transition to voluntary stopping or normal walking. Our results represent an important step toward advanced EEG-based cueing systems for smart FOG intervention, excluding the potential confounding of voluntary stopping.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app13010302</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>convolutional neural network ; Deep learning ; EEG ; EEGNet ; Electroencephalography ; Experiments ; freezing of gait ; Gait ; Neural networks ; Parkinson's disease ; Patients ; Quality of life ; Shallow ConvNet ; Transitions ; voluntary stopping ; Walking</subject><ispartof>Applied sciences, 2023-01, Vol.13 (1), p.302</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-dadc64ec4653bd14003f589c1011948b6e3f520654341347f8bf67d5175d82293</citedby><cites>FETCH-LOGICAL-c364t-dadc64ec4653bd14003f589c1011948b6e3f520654341347f8bf67d5175d82293</cites><orcidid>0000-0003-3373-8178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2761121948/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2761121948?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25744,27915,27916,37003,44581,74887</link.rule.ids></links><search><creatorcontrib>John, Alka Rachel</creatorcontrib><creatorcontrib>Cao, Zehong</creatorcontrib><creatorcontrib>Chen, Hsiang-Ting</creatorcontrib><creatorcontrib>Martens, Kaylena Ehgoetz</creatorcontrib><creatorcontrib>Georgiades, Matthew</creatorcontrib><creatorcontrib>Gilat, Moran</creatorcontrib><creatorcontrib>Nguyen, Hung T.</creatorcontrib><creatorcontrib>Lewis, Simon J. G.</creatorcontrib><creatorcontrib>Lin, Chin-Teng</creatorcontrib><title>Predicting the Onset of Freezing of Gait Using EEG Dynamics</title><title>Applied sciences</title><description>Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG from that of voluntary stopping. Our previous work demonstrated the neurological differences between the transition to FOG and voluntary stopping using electroencephalogram (EEG) signals. We employed a timed up-and-go (TUG) task to elicit FOG in PD patients. Some of these TUG tasks had an additional voluntary stopping component, where participants stopped walking based on verbal instruction to “stop”. The performance of the convolutional neural network (CNN) in identifying the transition to FOG from normal walking and the transition to voluntary stopping was explored. To the best of our knowledge, this work is the first study to propose a deep learning method to distinguish the transition to FOG from the transition to voluntary stop in PD patients. The models, trained on the EEG data from 17 PD patients who manifested FOG episodes, considering a short two-second transition window for FOG occurrence or voluntary stopping, achieved close to 75% classification accuracy in distinguishing transition to FOG from the transition to voluntary stopping or normal walking. Our results represent an important step toward advanced EEG-based cueing systems for smart FOG intervention, excluding the potential confounding of voluntary stopping.</description><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>EEG</subject><subject>EEGNet</subject><subject>Electroencephalography</subject><subject>Experiments</subject><subject>freezing of gait</subject><subject>Gait</subject><subject>Neural networks</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Quality of life</subject><subject>Shallow ConvNet</subject><subject>Transitions</subject><subject>voluntary stopping</subject><subject>Walking</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEFOwzAQtBBIVNATH4jEEQW8WdtxxAmVtlSqVA70bDmOXVK1SbDTQ3k9DkWoe9md0Wh2NITcAX1ELOiT7jpAChRpdkFGGc1Figzyy7P7moxD2NI4BaAEOiLP795WtenrZpP0nzZZNcH2SeuSmbf2e2DjPdd1n6zDgKbTefJ6bPS-NuGWXDm9C3b8t2_Iejb9mLyly9V8MXlZpgYF69NKV0Ywa5jgWFbAKEXHZWGAAhRMlsJGnFHBWYyILHeydCKvOOS8kllW4A1ZnHyrVm9V5-u99kfV6lr9Eq3fKO372uysksZyVqIGMIY5V2pdSioROc9jNVxEr_uTV-fbr4MNvdq2B9_E-CrLBUA2RIqqh5PK-DYEb93_V6BqKFudlY0_0Qhtew</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>John, Alka Rachel</creator><creator>Cao, Zehong</creator><creator>Chen, Hsiang-Ting</creator><creator>Martens, Kaylena Ehgoetz</creator><creator>Georgiades, Matthew</creator><creator>Gilat, Moran</creator><creator>Nguyen, Hung T.</creator><creator>Lewis, Simon J. G.</creator><creator>Lin, Chin-Teng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3373-8178</orcidid></search><sort><creationdate>20230101</creationdate><title>Predicting the Onset of Freezing of Gait Using EEG Dynamics</title><author>John, Alka Rachel ; Cao, Zehong ; Chen, Hsiang-Ting ; Martens, Kaylena Ehgoetz ; Georgiades, Matthew ; Gilat, Moran ; Nguyen, Hung T. ; Lewis, Simon J. G. ; Lin, Chin-Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-dadc64ec4653bd14003f589c1011948b6e3f520654341347f8bf67d5175d82293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>EEG</topic><topic>EEGNet</topic><topic>Electroencephalography</topic><topic>Experiments</topic><topic>freezing of gait</topic><topic>Gait</topic><topic>Neural networks</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Quality of life</topic><topic>Shallow ConvNet</topic><topic>Transitions</topic><topic>voluntary stopping</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>John, Alka Rachel</creatorcontrib><creatorcontrib>Cao, Zehong</creatorcontrib><creatorcontrib>Chen, Hsiang-Ting</creatorcontrib><creatorcontrib>Martens, Kaylena Ehgoetz</creatorcontrib><creatorcontrib>Georgiades, Matthew</creatorcontrib><creatorcontrib>Gilat, Moran</creatorcontrib><creatorcontrib>Nguyen, Hung T.</creatorcontrib><creatorcontrib>Lewis, Simon J. G.</creatorcontrib><creatorcontrib>Lin, Chin-Teng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>John, Alka Rachel</au><au>Cao, Zehong</au><au>Chen, Hsiang-Ting</au><au>Martens, Kaylena Ehgoetz</au><au>Georgiades, Matthew</au><au>Gilat, Moran</au><au>Nguyen, Hung T.</au><au>Lewis, Simon J. G.</au><au>Lin, Chin-Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the Onset of Freezing of Gait Using EEG Dynamics</atitle><jtitle>Applied sciences</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>302</spage><pages>302-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG from that of voluntary stopping. Our previous work demonstrated the neurological differences between the transition to FOG and voluntary stopping using electroencephalogram (EEG) signals. We employed a timed up-and-go (TUG) task to elicit FOG in PD patients. Some of these TUG tasks had an additional voluntary stopping component, where participants stopped walking based on verbal instruction to “stop”. The performance of the convolutional neural network (CNN) in identifying the transition to FOG from normal walking and the transition to voluntary stopping was explored. To the best of our knowledge, this work is the first study to propose a deep learning method to distinguish the transition to FOG from the transition to voluntary stop in PD patients. The models, trained on the EEG data from 17 PD patients who manifested FOG episodes, considering a short two-second transition window for FOG occurrence or voluntary stopping, achieved close to 75% classification accuracy in distinguishing transition to FOG from the transition to voluntary stopping or normal walking. Our results represent an important step toward advanced EEG-based cueing systems for smart FOG intervention, excluding the potential confounding of voluntary stopping.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app13010302</doi><orcidid>https://orcid.org/0000-0003-3373-8178</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-01, Vol.13 (1), p.302 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8ce54b3a11cc4ffbaab8083355730156 |
source | Publicly Available Content Database |
subjects | convolutional neural network Deep learning EEG EEGNet Electroencephalography Experiments freezing of gait Gait Neural networks Parkinson's disease Patients Quality of life Shallow ConvNet Transitions voluntary stopping Walking |
title | Predicting the Onset of Freezing of Gait Using EEG Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20Onset%20of%20Freezing%20of%20Gait%20Using%20EEG%20Dynamics&rft.jtitle=Applied%20sciences&rft.au=John,%20Alka%20Rachel&rft.date=2023-01-01&rft.volume=13&rft.issue=1&rft.spage=302&rft.pages=302-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app13010302&rft_dat=%3Cproquest_doaj_%3E2761121948%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-dadc64ec4653bd14003f589c1011948b6e3f520654341347f8bf67d5175d82293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761121948&rft_id=info:pmid/&rfr_iscdi=true |