Loading…
Context-aware deconvolution of cell–cell communication with Tensor-cell2cell
Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies measure the molecules mediating cell–cell communication, and emerging computational tools can exp...
Saved in:
Published in: | Nature communications 2022-06, Vol.13 (1), p.3665-3665, Article 3665 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-a2051fe65e041850e759d125ed66ae15bd7955da42093b7c8557f5b83df1ebcb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-a2051fe65e041850e759d125ed66ae15bd7955da42093b7c8557f5b83df1ebcb3 |
container_end_page | 3665 |
container_issue | 1 |
container_start_page | 3665 |
container_title | Nature communications |
container_volume | 13 |
creator | Armingol, Erick Baghdassarian, Hratch M. Martino, Cameron Perez-Lopez, Araceli Aamodt, Caitlin Knight, Rob Lewis, Nathan E. |
description | Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies measure the molecules mediating cell–cell communication, and emerging computational tools can exploit these data to decipher intercellular communication. However, current methods either disregard cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to decipher complex cell–cell communication across multiple time points, levels of disease severity, or spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor decomposition, which deciphers context-driven intercellular communication by simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-cell2cell uncovers context-driven patterns of communication associated with different phenotypic states and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g., participating cell–cell and ligand-receptor pairs) linked to severities of Coronavirus Disease 2019 and to Autism Spectrum Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex communication patterns across diverse conditions.
Cellular contexts such as disease state, organismal life stage and tissue microenvironment, shape intercellular communication, and ultimately affect an organism’s phenotypes. Here, the authors present Tensor-cell2cell, an unsupervised method for deciphering context-driven intercellular communication. |
doi_str_mv | 10.1038/s41467-022-31369-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8cf84ba952c64583854bb7a680fd84cf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8cf84ba952c64583854bb7a680fd84cf</doaj_id><sourcerecordid>2681814812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-a2051fe65e041850e759d125ed66ae15bd7955da42093b7c8557f5b83df1ebcb3</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAkdiwCfhuZ4OEjrhUquimrC1fJqc5SuxiJ23Z8Q68IU-Cc1J6YYEXHsvz-5vx_FX1EqO3GFH1LjPMhGwQIQ3FVLQNeVIdEsRwgyWhTx-cD6rjnHeoLNpixdjz6oByKZDC8rD6uolhgpupMdcmQe3BxXAVh3nqY6hjVzsYht8_fy2hdnEc59A7s09e99NFfQ4hx9QsabJsL6pnnRkyHN_Go-rbp4_nmy_N6dnnk82H08ZxhkoxgjjuQHAoTSqOQPLWY8LBC2EAc-tly7k3jKCWWukU57LjVlHfYbDO0qPqZOX6aHb6MvWjST90NL3eX8S01SZNvRtAK9cpZk3LiROMK6o4s1YaoVDnFXNdYb1fWZezHcE7CFMywyPo40zoL_Q2XumWUInatgDe3AJS_D5DnvTY52UaJkCcsyZCYYWZwqRIX_8j3cU5hTKqvYooQYksKrKqXIo5J-jumsFIL-7r1X1d3Nd79_WCfvXwG3dP_npdBHQV5JIKW0j3tf-D_QPZc7vD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681286327</pqid></control><display><type>article</type><title>Context-aware deconvolution of cell–cell communication with Tensor-cell2cell</title><source>Publicly Available Content Database</source><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Coronavirus Research Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Armingol, Erick ; Baghdassarian, Hratch M. ; Martino, Cameron ; Perez-Lopez, Araceli ; Aamodt, Caitlin ; Knight, Rob ; Lewis, Nathan E.</creator><creatorcontrib>Armingol, Erick ; Baghdassarian, Hratch M. ; Martino, Cameron ; Perez-Lopez, Araceli ; Aamodt, Caitlin ; Knight, Rob ; Lewis, Nathan E.</creatorcontrib><description>Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies measure the molecules mediating cell–cell communication, and emerging computational tools can exploit these data to decipher intercellular communication. However, current methods either disregard cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to decipher complex cell–cell communication across multiple time points, levels of disease severity, or spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor decomposition, which deciphers context-driven intercellular communication by simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-cell2cell uncovers context-driven patterns of communication associated with different phenotypic states and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g., participating cell–cell and ligand-receptor pairs) linked to severities of Coronavirus Disease 2019 and to Autism Spectrum Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex communication patterns across diverse conditions.
Cellular contexts such as disease state, organismal life stage and tissue microenvironment, shape intercellular communication, and ultimately affect an organism’s phenotypes. Here, the authors present Tensor-cell2cell, an unsupervised method for deciphering context-driven intercellular communication.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-022-31369-2</identifier><identifier>PMID: 35760817</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 631/114/2391 ; 631/114/2397 ; 631/114/2398 ; 631/1647/514/1949 ; Autism ; Autism Spectrum Disorder ; Cell Communication ; Cell interactions ; Cellular communication ; Communication ; Computer applications ; Context ; Coronaviruses ; COVID-19 ; Developmental stages ; Humanities and Social Sciences ; Humans ; Ligands ; Mathematical analysis ; Microenvironments ; multidisciplinary ; Phenotype ; Phenotypes ; Receptors ; Science ; Science (multidisciplinary) ; Software ; Tensors</subject><ispartof>Nature communications, 2022-06, Vol.13 (1), p.3665-3665, Article 3665</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-a2051fe65e041850e759d125ed66ae15bd7955da42093b7c8557f5b83df1ebcb3</citedby><cites>FETCH-LOGICAL-c540t-a2051fe65e041850e759d125ed66ae15bd7955da42093b7c8557f5b83df1ebcb3</cites><orcidid>0000-0001-9334-1258 ; 0000-0002-1546-9165 ; 0000-0003-2739-8613 ; 0000-0002-0975-9019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2681286327/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2681286327?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35760817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Armingol, Erick</creatorcontrib><creatorcontrib>Baghdassarian, Hratch M.</creatorcontrib><creatorcontrib>Martino, Cameron</creatorcontrib><creatorcontrib>Perez-Lopez, Araceli</creatorcontrib><creatorcontrib>Aamodt, Caitlin</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Lewis, Nathan E.</creatorcontrib><title>Context-aware deconvolution of cell–cell communication with Tensor-cell2cell</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies measure the molecules mediating cell–cell communication, and emerging computational tools can exploit these data to decipher intercellular communication. However, current methods either disregard cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to decipher complex cell–cell communication across multiple time points, levels of disease severity, or spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor decomposition, which deciphers context-driven intercellular communication by simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-cell2cell uncovers context-driven patterns of communication associated with different phenotypic states and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g., participating cell–cell and ligand-receptor pairs) linked to severities of Coronavirus Disease 2019 and to Autism Spectrum Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex communication patterns across diverse conditions.
Cellular contexts such as disease state, organismal life stage and tissue microenvironment, shape intercellular communication, and ultimately affect an organism’s phenotypes. Here, the authors present Tensor-cell2cell, an unsupervised method for deciphering context-driven intercellular communication.</description><subject>38</subject><subject>631/114/2391</subject><subject>631/114/2397</subject><subject>631/114/2398</subject><subject>631/1647/514/1949</subject><subject>Autism</subject><subject>Autism Spectrum Disorder</subject><subject>Cell Communication</subject><subject>Cell interactions</subject><subject>Cellular communication</subject><subject>Communication</subject><subject>Computer applications</subject><subject>Context</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Developmental stages</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Microenvironments</subject><subject>multidisciplinary</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Receptors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Software</subject><subject>Tensors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAkdiwCfhuZ4OEjrhUquimrC1fJqc5SuxiJ23Z8Q68IU-Cc1J6YYEXHsvz-5vx_FX1EqO3GFH1LjPMhGwQIQ3FVLQNeVIdEsRwgyWhTx-cD6rjnHeoLNpixdjz6oByKZDC8rD6uolhgpupMdcmQe3BxXAVh3nqY6hjVzsYht8_fy2hdnEc59A7s09e99NFfQ4hx9QsabJsL6pnnRkyHN_Go-rbp4_nmy_N6dnnk82H08ZxhkoxgjjuQHAoTSqOQPLWY8LBC2EAc-tly7k3jKCWWukU57LjVlHfYbDO0qPqZOX6aHb6MvWjST90NL3eX8S01SZNvRtAK9cpZk3LiROMK6o4s1YaoVDnFXNdYb1fWZezHcE7CFMywyPo40zoL_Q2XumWUInatgDe3AJS_D5DnvTY52UaJkCcsyZCYYWZwqRIX_8j3cU5hTKqvYooQYksKrKqXIo5J-jumsFIL-7r1X1d3Nd79_WCfvXwG3dP_npdBHQV5JIKW0j3tf-D_QPZc7vD</recordid><startdate>20220627</startdate><enddate>20220627</enddate><creator>Armingol, Erick</creator><creator>Baghdassarian, Hratch M.</creator><creator>Martino, Cameron</creator><creator>Perez-Lopez, Araceli</creator><creator>Aamodt, Caitlin</creator><creator>Knight, Rob</creator><creator>Lewis, Nathan E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9334-1258</orcidid><orcidid>https://orcid.org/0000-0002-1546-9165</orcidid><orcidid>https://orcid.org/0000-0003-2739-8613</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid></search><sort><creationdate>20220627</creationdate><title>Context-aware deconvolution of cell–cell communication with Tensor-cell2cell</title><author>Armingol, Erick ; Baghdassarian, Hratch M. ; Martino, Cameron ; Perez-Lopez, Araceli ; Aamodt, Caitlin ; Knight, Rob ; Lewis, Nathan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-a2051fe65e041850e759d125ed66ae15bd7955da42093b7c8557f5b83df1ebcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>38</topic><topic>631/114/2391</topic><topic>631/114/2397</topic><topic>631/114/2398</topic><topic>631/1647/514/1949</topic><topic>Autism</topic><topic>Autism Spectrum Disorder</topic><topic>Cell Communication</topic><topic>Cell interactions</topic><topic>Cellular communication</topic><topic>Communication</topic><topic>Computer applications</topic><topic>Context</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Developmental stages</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Microenvironments</topic><topic>multidisciplinary</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Receptors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Software</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armingol, Erick</creatorcontrib><creatorcontrib>Baghdassarian, Hratch M.</creatorcontrib><creatorcontrib>Martino, Cameron</creatorcontrib><creatorcontrib>Perez-Lopez, Araceli</creatorcontrib><creatorcontrib>Aamodt, Caitlin</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Lewis, Nathan E.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Armingol, Erick</au><au>Baghdassarian, Hratch M.</au><au>Martino, Cameron</au><au>Perez-Lopez, Araceli</au><au>Aamodt, Caitlin</au><au>Knight, Rob</au><au>Lewis, Nathan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-aware deconvolution of cell–cell communication with Tensor-cell2cell</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2022-06-27</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>3665</spage><epage>3665</epage><pages>3665-3665</pages><artnum>3665</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Cell interactions determine phenotypes, and intercellular communication is shaped by cellular contexts such as disease state, organismal life stage, and tissue microenvironment. Single-cell technologies measure the molecules mediating cell–cell communication, and emerging computational tools can exploit these data to decipher intercellular communication. However, current methods either disregard cellular context or rely on simple pairwise comparisons between samples, thus limiting the ability to decipher complex cell–cell communication across multiple time points, levels of disease severity, or spatial contexts. Here we present Tensor-cell2cell, an unsupervised method using tensor decomposition, which deciphers context-driven intercellular communication by simultaneously accounting for multiple stages, states, or locations of the cells. To do so, Tensor-cell2cell uncovers context-driven patterns of communication associated with different phenotypic states and determined by unique combinations of cell types and ligand-receptor pairs. As such, Tensor-cell2cell robustly improves upon and extends the analytical capabilities of existing tools. We show Tensor-cell2cell can identify multiple modules associated with distinct communication processes (e.g., participating cell–cell and ligand-receptor pairs) linked to severities of Coronavirus Disease 2019 and to Autism Spectrum Disorder. Thus, we introduce an effective and easy-to-use strategy for understanding complex communication patterns across diverse conditions.
Cellular contexts such as disease state, organismal life stage and tissue microenvironment, shape intercellular communication, and ultimately affect an organism’s phenotypes. Here, the authors present Tensor-cell2cell, an unsupervised method for deciphering context-driven intercellular communication.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35760817</pmid><doi>10.1038/s41467-022-31369-2</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9334-1258</orcidid><orcidid>https://orcid.org/0000-0002-1546-9165</orcidid><orcidid>https://orcid.org/0000-0003-2739-8613</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2022-06, Vol.13 (1), p.3665-3665, Article 3665 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8cf84ba952c64583854bb7a680fd84cf |
source | Publicly Available Content Database; PubMed Central(OpenAccess); Nature; Coronavirus Research Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 38 631/114/2391 631/114/2397 631/114/2398 631/1647/514/1949 Autism Autism Spectrum Disorder Cell Communication Cell interactions Cellular communication Communication Computer applications Context Coronaviruses COVID-19 Developmental stages Humanities and Social Sciences Humans Ligands Mathematical analysis Microenvironments multidisciplinary Phenotype Phenotypes Receptors Science Science (multidisciplinary) Software Tensors |
title | Context-aware deconvolution of cell–cell communication with Tensor-cell2cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-aware%20deconvolution%20of%20cell%E2%80%93cell%20communication%20with%20Tensor-cell2cell&rft.jtitle=Nature%20communications&rft.au=Armingol,%20Erick&rft.date=2022-06-27&rft.volume=13&rft.issue=1&rft.spage=3665&rft.epage=3665&rft.pages=3665-3665&rft.artnum=3665&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-022-31369-2&rft_dat=%3Cproquest_doaj_%3E2681814812%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-a2051fe65e041850e759d125ed66ae15bd7955da42093b7c8557f5b83df1ebcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681286327&rft_id=info:pmid/35760817&rfr_iscdi=true |