Loading…

A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury

Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducte...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cellular neuroscience 2018-02, Vol.11, p.416-416
Main Authors: Koch, Marta, Nicolas, Maya, Zschaetzsch, Marlen, de Geest, Natalie, Claeys, Annelies, Yan, Jiekun, Morgan, Matthew J, Erfurth, Maria-Luise, Holt, Matthew, Schmucker, Dietmar, Hassan, Bassem A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3
cites cdi_FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3
container_end_page 416
container_issue
container_start_page 416
container_title Frontiers in cellular neuroscience
container_volume 11
creator Koch, Marta
Nicolas, Maya
Zschaetzsch, Marlen
de Geest, Natalie
Claeys, Annelies
Yan, Jiekun
Morgan, Matthew J
Erfurth, Maria-Luise
Holt, Matthew
Schmucker, Dietmar
Hassan, Bassem A
description Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.
doi_str_mv 10.3389/fncel.2017.00416
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8cf8885497d447a4a2c78e569f59525b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8cf8885497d447a4a2c78e569f59525b</doaj_id><sourcerecordid>2007983820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw54QscYFDFtvx5wVp1XbbhRVwAK7WxHGarJJ4sZMt--_x7paq7cnW-J1nZjxvlr0leFYUSn-qB-u6GcVEzjBmRDzLTokQNOcE0-cP7ifZqxjXGAsqmHqZnVDNJFWsOM1-z9ECxnwB1o0xv4gWepJ_-fYV_YCxuYUduhwaSFUimv_1A3ToKvjbsUHtgC7c1nV-07thRDBUCOrRBbQc1lPYvc5e1NBF9-buPMt-LS5_nl_nq-9Xy_P5Kres0CIXjlIsiasJk85aLFStsSuBFE5QLrlVQjHMJIiyLKWoOCXEMls5ULiEqi7OsuWRW3lYm01oewg746E1h4APNwbC2NrOGWVrpRRnWlYsERlQK5XjQtdcc8rLxPp8ZG2msneVTXMF6B5BH78MbWNu_NZwhTXTPAE-HgHNk7Tr-crsY2lPJGn1liTth7tiwf-ZXBxN38a0zA4G56doKMZSq0JRnKTvn0jXfgppF0lFVfqRZIW9Ch9VNvgYg6vvOyDY7M1iDmYxe7OYg1lSyruHA98n_HdH8Q--grjM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282113380</pqid></control><display><type>article</type><title>A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury</title><source>Publicly Available Content Database</source><source>PubMed Central (PMC)</source><creator>Koch, Marta ; Nicolas, Maya ; Zschaetzsch, Marlen ; de Geest, Natalie ; Claeys, Annelies ; Yan, Jiekun ; Morgan, Matthew J ; Erfurth, Maria-Luise ; Holt, Matthew ; Schmucker, Dietmar ; Hassan, Bassem A</creator><creatorcontrib>Koch, Marta ; Nicolas, Maya ; Zschaetzsch, Marlen ; de Geest, Natalie ; Claeys, Annelies ; Yan, Jiekun ; Morgan, Matthew J ; Erfurth, Maria-Luise ; Holt, Matthew ; Schmucker, Dietmar ; Hassan, Bassem A</creatorcontrib><description>Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2017.00416</identifier><identifier>PMID: 29472843</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>3' Untranslated regions ; axonal growth ; axonal injury ; Axonogenesis ; Brain research ; Cell adhesion &amp; migration ; Cell adhesion molecules ; Central nervous system ; Down's syndrome ; Drosophila melanogaster ; DSCAM protein ; Genes ; Genetic analysis ; Genetic screening ; Insects ; Kinases ; Life Sciences ; Mammals ; Neural cell adhesion molecule ; Neurobiology ; Neurons and Cognition ; Neuroscience ; post-transcriptional reguylatiopn ; Recovery of function ; Signal transduction ; Trauma</subject><ispartof>Frontiers in cellular neuroscience, 2018-02, Vol.11, p.416-416</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>Copyright © 2018 Koch, Nicolas, Zschaetzsch, de Geest, Claeys, Yan, Morgan, Erfurth, Holt, Schmucker and Hassan. 2018 Koch, Nicolas, Zschaetzsch, de Geest, Claeys, Yan, Morgan, Erfurth, Holt, Schmucker and Hassan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3</citedby><cites>FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3</cites><orcidid>0000-0002-8958-4027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2282113380/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2282113380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29472843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01718099$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, Marta</creatorcontrib><creatorcontrib>Nicolas, Maya</creatorcontrib><creatorcontrib>Zschaetzsch, Marlen</creatorcontrib><creatorcontrib>de Geest, Natalie</creatorcontrib><creatorcontrib>Claeys, Annelies</creatorcontrib><creatorcontrib>Yan, Jiekun</creatorcontrib><creatorcontrib>Morgan, Matthew J</creatorcontrib><creatorcontrib>Erfurth, Maria-Luise</creatorcontrib><creatorcontrib>Holt, Matthew</creatorcontrib><creatorcontrib>Schmucker, Dietmar</creatorcontrib><creatorcontrib>Hassan, Bassem A</creatorcontrib><title>A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.</description><subject>3' Untranslated regions</subject><subject>axonal growth</subject><subject>axonal injury</subject><subject>Axonogenesis</subject><subject>Brain research</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell adhesion molecules</subject><subject>Central nervous system</subject><subject>Down's syndrome</subject><subject>Drosophila melanogaster</subject><subject>DSCAM protein</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic screening</subject><subject>Insects</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Neural cell adhesion molecule</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><subject>post-transcriptional reguylatiopn</subject><subject>Recovery of function</subject><subject>Signal transduction</subject><subject>Trauma</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw54QscYFDFtvx5wVp1XbbhRVwAK7WxHGarJJ4sZMt--_x7paq7cnW-J1nZjxvlr0leFYUSn-qB-u6GcVEzjBmRDzLTokQNOcE0-cP7ifZqxjXGAsqmHqZnVDNJFWsOM1-z9ECxnwB1o0xv4gWepJ_-fYV_YCxuYUduhwaSFUimv_1A3ToKvjbsUHtgC7c1nV-07thRDBUCOrRBbQc1lPYvc5e1NBF9-buPMt-LS5_nl_nq-9Xy_P5Kres0CIXjlIsiasJk85aLFStsSuBFE5QLrlVQjHMJIiyLKWoOCXEMls5ULiEqi7OsuWRW3lYm01oewg746E1h4APNwbC2NrOGWVrpRRnWlYsERlQK5XjQtdcc8rLxPp8ZG2msneVTXMF6B5BH78MbWNu_NZwhTXTPAE-HgHNk7Tr-crsY2lPJGn1liTth7tiwf-ZXBxN38a0zA4G56doKMZSq0JRnKTvn0jXfgppF0lFVfqRZIW9Ch9VNvgYg6vvOyDY7M1iDmYxe7OYg1lSyruHA98n_HdH8Q--grjM</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Koch, Marta</creator><creator>Nicolas, Maya</creator><creator>Zschaetzsch, Marlen</creator><creator>de Geest, Natalie</creator><creator>Claeys, Annelies</creator><creator>Yan, Jiekun</creator><creator>Morgan, Matthew J</creator><creator>Erfurth, Maria-Luise</creator><creator>Holt, Matthew</creator><creator>Schmucker, Dietmar</creator><creator>Hassan, Bassem A</creator><general>Frontiers Research Foundation</general><general>Frontiers</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8958-4027</orcidid></search><sort><creationdate>20180208</creationdate><title>A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury</title><author>Koch, Marta ; Nicolas, Maya ; Zschaetzsch, Marlen ; de Geest, Natalie ; Claeys, Annelies ; Yan, Jiekun ; Morgan, Matthew J ; Erfurth, Maria-Luise ; Holt, Matthew ; Schmucker, Dietmar ; Hassan, Bassem A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3' Untranslated regions</topic><topic>axonal growth</topic><topic>axonal injury</topic><topic>Axonogenesis</topic><topic>Brain research</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell adhesion molecules</topic><topic>Central nervous system</topic><topic>Down's syndrome</topic><topic>Drosophila melanogaster</topic><topic>DSCAM protein</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic screening</topic><topic>Insects</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Neural cell adhesion molecule</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><topic>post-transcriptional reguylatiopn</topic><topic>Recovery of function</topic><topic>Signal transduction</topic><topic>Trauma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Marta</creatorcontrib><creatorcontrib>Nicolas, Maya</creatorcontrib><creatorcontrib>Zschaetzsch, Marlen</creatorcontrib><creatorcontrib>de Geest, Natalie</creatorcontrib><creatorcontrib>Claeys, Annelies</creatorcontrib><creatorcontrib>Yan, Jiekun</creatorcontrib><creatorcontrib>Morgan, Matthew J</creatorcontrib><creatorcontrib>Erfurth, Maria-Luise</creatorcontrib><creatorcontrib>Holt, Matthew</creatorcontrib><creatorcontrib>Schmucker, Dietmar</creatorcontrib><creatorcontrib>Hassan, Bassem A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Marta</au><au>Nicolas, Maya</au><au>Zschaetzsch, Marlen</au><au>de Geest, Natalie</au><au>Claeys, Annelies</au><au>Yan, Jiekun</au><au>Morgan, Matthew J</au><au>Erfurth, Maria-Luise</au><au>Holt, Matthew</au><au>Schmucker, Dietmar</au><au>Hassan, Bassem A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2018-02-08</date><risdate>2018</risdate><volume>11</volume><spage>416</spage><epage>416</epage><pages>416-416</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>29472843</pmid><doi>10.3389/fncel.2017.00416</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8958-4027</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5102
ispartof Frontiers in cellular neuroscience, 2018-02, Vol.11, p.416-416
issn 1662-5102
1662-5102
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8cf8885497d447a4a2c78e569f59525b
source Publicly Available Content Database; PubMed Central (PMC)
subjects 3' Untranslated regions
axonal growth
axonal injury
Axonogenesis
Brain research
Cell adhesion & migration
Cell adhesion molecules
Central nervous system
Down's syndrome
Drosophila melanogaster
DSCAM protein
Genes
Genetic analysis
Genetic screening
Insects
Kinases
Life Sciences
Mammals
Neural cell adhesion molecule
Neurobiology
Neurons and Cognition
Neuroscience
post-transcriptional reguylatiopn
Recovery of function
Signal transduction
Trauma
title A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fat-Facets-Dscam1-JNK%20Pathway%20Enhances%20Axonal%20Growth%20in%20Development%20and%20after%20Injury&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Koch,%20Marta&rft.date=2018-02-08&rft.volume=11&rft.spage=416&rft.epage=416&rft.pages=416-416&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2017.00416&rft_dat=%3Cproquest_doaj_%3E2007983820%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282113380&rft_id=info:pmid/29472843&rfr_iscdi=true