Loading…
A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury
Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducte...
Saved in:
Published in: | Frontiers in cellular neuroscience 2018-02, Vol.11, p.416-416 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3 |
container_end_page | 416 |
container_issue | |
container_start_page | 416 |
container_title | Frontiers in cellular neuroscience |
container_volume | 11 |
creator | Koch, Marta Nicolas, Maya Zschaetzsch, Marlen de Geest, Natalie Claeys, Annelies Yan, Jiekun Morgan, Matthew J Erfurth, Maria-Luise Holt, Matthew Schmucker, Dietmar Hassan, Bassem A |
description | Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism. |
doi_str_mv | 10.3389/fncel.2017.00416 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8cf8885497d447a4a2c78e569f59525b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8cf8885497d447a4a2c78e569f59525b</doaj_id><sourcerecordid>2007983820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw54QscYFDFtvx5wVp1XbbhRVwAK7WxHGarJJ4sZMt--_x7paq7cnW-J1nZjxvlr0leFYUSn-qB-u6GcVEzjBmRDzLTokQNOcE0-cP7ifZqxjXGAsqmHqZnVDNJFWsOM1-z9ECxnwB1o0xv4gWepJ_-fYV_YCxuYUduhwaSFUimv_1A3ToKvjbsUHtgC7c1nV-07thRDBUCOrRBbQc1lPYvc5e1NBF9-buPMt-LS5_nl_nq-9Xy_P5Kres0CIXjlIsiasJk85aLFStsSuBFE5QLrlVQjHMJIiyLKWoOCXEMls5ULiEqi7OsuWRW3lYm01oewg746E1h4APNwbC2NrOGWVrpRRnWlYsERlQK5XjQtdcc8rLxPp8ZG2msneVTXMF6B5BH78MbWNu_NZwhTXTPAE-HgHNk7Tr-crsY2lPJGn1liTth7tiwf-ZXBxN38a0zA4G56doKMZSq0JRnKTvn0jXfgppF0lFVfqRZIW9Ch9VNvgYg6vvOyDY7M1iDmYxe7OYg1lSyruHA98n_HdH8Q--grjM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2282113380</pqid></control><display><type>article</type><title>A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury</title><source>Publicly Available Content Database</source><source>PubMed Central (PMC)</source><creator>Koch, Marta ; Nicolas, Maya ; Zschaetzsch, Marlen ; de Geest, Natalie ; Claeys, Annelies ; Yan, Jiekun ; Morgan, Matthew J ; Erfurth, Maria-Luise ; Holt, Matthew ; Schmucker, Dietmar ; Hassan, Bassem A</creator><creatorcontrib>Koch, Marta ; Nicolas, Maya ; Zschaetzsch, Marlen ; de Geest, Natalie ; Claeys, Annelies ; Yan, Jiekun ; Morgan, Matthew J ; Erfurth, Maria-Luise ; Holt, Matthew ; Schmucker, Dietmar ; Hassan, Bassem A</creatorcontrib><description>Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2017.00416</identifier><identifier>PMID: 29472843</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>3' Untranslated regions ; axonal growth ; axonal injury ; Axonogenesis ; Brain research ; Cell adhesion & migration ; Cell adhesion molecules ; Central nervous system ; Down's syndrome ; Drosophila melanogaster ; DSCAM protein ; Genes ; Genetic analysis ; Genetic screening ; Insects ; Kinases ; Life Sciences ; Mammals ; Neural cell adhesion molecule ; Neurobiology ; Neurons and Cognition ; Neuroscience ; post-transcriptional reguylatiopn ; Recovery of function ; Signal transduction ; Trauma</subject><ispartof>Frontiers in cellular neuroscience, 2018-02, Vol.11, p.416-416</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>Copyright © 2018 Koch, Nicolas, Zschaetzsch, de Geest, Claeys, Yan, Morgan, Erfurth, Holt, Schmucker and Hassan. 2018 Koch, Nicolas, Zschaetzsch, de Geest, Claeys, Yan, Morgan, Erfurth, Holt, Schmucker and Hassan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3</citedby><cites>FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3</cites><orcidid>0000-0002-8958-4027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2282113380/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2282113380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29472843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01718099$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Koch, Marta</creatorcontrib><creatorcontrib>Nicolas, Maya</creatorcontrib><creatorcontrib>Zschaetzsch, Marlen</creatorcontrib><creatorcontrib>de Geest, Natalie</creatorcontrib><creatorcontrib>Claeys, Annelies</creatorcontrib><creatorcontrib>Yan, Jiekun</creatorcontrib><creatorcontrib>Morgan, Matthew J</creatorcontrib><creatorcontrib>Erfurth, Maria-Luise</creatorcontrib><creatorcontrib>Holt, Matthew</creatorcontrib><creatorcontrib>Schmucker, Dietmar</creatorcontrib><creatorcontrib>Hassan, Bassem A</creatorcontrib><title>A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.</description><subject>3' Untranslated regions</subject><subject>axonal growth</subject><subject>axonal injury</subject><subject>Axonogenesis</subject><subject>Brain research</subject><subject>Cell adhesion & migration</subject><subject>Cell adhesion molecules</subject><subject>Central nervous system</subject><subject>Down's syndrome</subject><subject>Drosophila melanogaster</subject><subject>DSCAM protein</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic screening</subject><subject>Insects</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Neural cell adhesion molecule</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><subject>post-transcriptional reguylatiopn</subject><subject>Recovery of function</subject><subject>Signal transduction</subject><subject>Trauma</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw54QscYFDFtvx5wVp1XbbhRVwAK7WxHGarJJ4sZMt--_x7paq7cnW-J1nZjxvlr0leFYUSn-qB-u6GcVEzjBmRDzLTokQNOcE0-cP7ifZqxjXGAsqmHqZnVDNJFWsOM1-z9ECxnwB1o0xv4gWepJ_-fYV_YCxuYUduhwaSFUimv_1A3ToKvjbsUHtgC7c1nV-07thRDBUCOrRBbQc1lPYvc5e1NBF9-buPMt-LS5_nl_nq-9Xy_P5Kres0CIXjlIsiasJk85aLFStsSuBFE5QLrlVQjHMJIiyLKWoOCXEMls5ULiEqi7OsuWRW3lYm01oewg746E1h4APNwbC2NrOGWVrpRRnWlYsERlQK5XjQtdcc8rLxPp8ZG2msneVTXMF6B5BH78MbWNu_NZwhTXTPAE-HgHNk7Tr-crsY2lPJGn1liTth7tiwf-ZXBxN38a0zA4G56doKMZSq0JRnKTvn0jXfgppF0lFVfqRZIW9Ch9VNvgYg6vvOyDY7M1iDmYxe7OYg1lSyruHA98n_HdH8Q--grjM</recordid><startdate>20180208</startdate><enddate>20180208</enddate><creator>Koch, Marta</creator><creator>Nicolas, Maya</creator><creator>Zschaetzsch, Marlen</creator><creator>de Geest, Natalie</creator><creator>Claeys, Annelies</creator><creator>Yan, Jiekun</creator><creator>Morgan, Matthew J</creator><creator>Erfurth, Maria-Luise</creator><creator>Holt, Matthew</creator><creator>Schmucker, Dietmar</creator><creator>Hassan, Bassem A</creator><general>Frontiers Research Foundation</general><general>Frontiers</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8958-4027</orcidid></search><sort><creationdate>20180208</creationdate><title>A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury</title><author>Koch, Marta ; Nicolas, Maya ; Zschaetzsch, Marlen ; de Geest, Natalie ; Claeys, Annelies ; Yan, Jiekun ; Morgan, Matthew J ; Erfurth, Maria-Luise ; Holt, Matthew ; Schmucker, Dietmar ; Hassan, Bassem A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3' Untranslated regions</topic><topic>axonal growth</topic><topic>axonal injury</topic><topic>Axonogenesis</topic><topic>Brain research</topic><topic>Cell adhesion & migration</topic><topic>Cell adhesion molecules</topic><topic>Central nervous system</topic><topic>Down's syndrome</topic><topic>Drosophila melanogaster</topic><topic>DSCAM protein</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic screening</topic><topic>Insects</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Neural cell adhesion molecule</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><topic>post-transcriptional reguylatiopn</topic><topic>Recovery of function</topic><topic>Signal transduction</topic><topic>Trauma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koch, Marta</creatorcontrib><creatorcontrib>Nicolas, Maya</creatorcontrib><creatorcontrib>Zschaetzsch, Marlen</creatorcontrib><creatorcontrib>de Geest, Natalie</creatorcontrib><creatorcontrib>Claeys, Annelies</creatorcontrib><creatorcontrib>Yan, Jiekun</creatorcontrib><creatorcontrib>Morgan, Matthew J</creatorcontrib><creatorcontrib>Erfurth, Maria-Luise</creatorcontrib><creatorcontrib>Holt, Matthew</creatorcontrib><creatorcontrib>Schmucker, Dietmar</creatorcontrib><creatorcontrib>Hassan, Bassem A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koch, Marta</au><au>Nicolas, Maya</au><au>Zschaetzsch, Marlen</au><au>de Geest, Natalie</au><au>Claeys, Annelies</au><au>Yan, Jiekun</au><au>Morgan, Matthew J</au><au>Erfurth, Maria-Luise</au><au>Holt, Matthew</au><au>Schmucker, Dietmar</au><au>Hassan, Bassem A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2018-02-08</date><risdate>2018</risdate><volume>11</volume><spage>416</spage><epage>416</epage><pages>416-416</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>29472843</pmid><doi>10.3389/fncel.2017.00416</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8958-4027</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5102 |
ispartof | Frontiers in cellular neuroscience, 2018-02, Vol.11, p.416-416 |
issn | 1662-5102 1662-5102 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8cf8885497d447a4a2c78e569f59525b |
source | Publicly Available Content Database; PubMed Central (PMC) |
subjects | 3' Untranslated regions axonal growth axonal injury Axonogenesis Brain research Cell adhesion & migration Cell adhesion molecules Central nervous system Down's syndrome Drosophila melanogaster DSCAM protein Genes Genetic analysis Genetic screening Insects Kinases Life Sciences Mammals Neural cell adhesion molecule Neurobiology Neurons and Cognition Neuroscience post-transcriptional reguylatiopn Recovery of function Signal transduction Trauma |
title | A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fat-Facets-Dscam1-JNK%20Pathway%20Enhances%20Axonal%20Growth%20in%20Development%20and%20after%20Injury&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Koch,%20Marta&rft.date=2018-02-08&rft.volume=11&rft.spage=416&rft.epage=416&rft.pages=416-416&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2017.00416&rft_dat=%3Cproquest_doaj_%3E2007983820%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4396-6e22071ef147ecc068f90eba13e62575c8684047a6bbb76d5211c4cdea80badf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2282113380&rft_id=info:pmid/29472843&rfr_iscdi=true |