Loading…
Integrated systems biology approach identifies gene targets for endothelial dysfunction
Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to id...
Saved in:
Published in: | Molecular systems biology 2023-12, Vol.19 (12), p.e11462-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4782-4b9d819c6244a20b3e5f7d77be12de2e458c26411c146d804d58fcdfa709f18d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4782-4b9d819c6244a20b3e5f7d77be12de2e458c26411c146d804d58fcdfa709f18d3 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | e11462 |
container_title | Molecular systems biology |
container_volume | 19 |
creator | Pinheiro‐de‐Sousa, Iguaracy Fonseca‐Alaniz, Miriam Helena Giudice, Girolamo Valadão, Iuri Cordeiro Modestia, Silvestre Massimo Mattioli, Sarah Viana Junior, Ricardo Rosa Zalmas, Lykourgos‐Panagiotis Fang, Yun Petsalaki, Evangelia Krieger, José Eduardo |
description | Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro‐ and anti‐ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro‐ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti‐ED network was enriched in hypoxia, angiogenesis and cancer‐related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease‐specific candidate drug targets for endothelial dysfunction.
Synopsis
Multi‐omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.
Multi‐omics data integration of endothelial cells treated with mimics of major cardiovascular disease factors identified 81 putative endothelial dysfunction (ED) genes.
Upon siRNA‐mediated gene knockdown, 83% of ED gene candidates affected at least one ED phenotype (26 exacerbating and 31 ameliorating the ED phenotypes).
The analyses reveal emergent properties of disease networks, distinguishing between adaptation and rewiring for survival and those associated with deregulation that can be targeted for ED treatment.
An orthogonal drug screen on treated endothelial cells provided additional support for DUSP1, IL6 and CCL2 as putative targets for ED.
Multi‐omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets. |
doi_str_mv | 10.15252/msb.202211462 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8cfb497568fa4b99a4e3e03e13a51c89</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8cfb497568fa4b99a4e3e03e13a51c89</doaj_id><sourcerecordid>2898208232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4782-4b9d819c6244a20b3e5f7d77be12de2e458c26411c146d804d58fcdfa709f18d3</originalsourceid><addsrcrecordid>eNqFkc-P1CAYhonRuD_06tE08eJlRvhKWzjqZtVJ1nhQ45FQ-OgyacsINJv-9-LOOhovnvhCHp6PNy8hLxjdsgYaeDOlfgsUgDHewiNyzjrONxwkPP5rPiMXKe0prQUT8JSc1YLWTLb0nHzfzRmHqDPaKq0p45Sq3ocxDGulD4cYtLmtvMU5e-cxVQPOWGUdB8ypciFWONuQb3H0eqzsmtwym-zD_Iw8cXpM-PzhvCTf3l9_vfq4ufn8YXf19mZjeCdgw3tpBZOmBc410L7GxnW263pkYBGQN8JAyxkzJZ4VlNtGOGOd7qh0TNj6kuyOXhv0Xh2in3RcVdBe3V-EOCgdszcjKmFcz2XXtMLpsldqjjXSGlmtG2aELK7XR1eJ_WPBlNXkk8Fx1DOGJSkQsukYo5QX9NU_6D4scS5Jf1ECqIAaCrU9UiaGlCK60wcZVff1qVKfOtVXHrx80C79hPaE_-6rAOII3PkR1__o1Kcv7_64fwKPMqYK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898208232</pqid></control><display><type>article</type><title>Integrated systems biology approach identifies gene targets for endothelial dysfunction</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Pinheiro‐de‐Sousa, Iguaracy ; Fonseca‐Alaniz, Miriam Helena ; Giudice, Girolamo ; Valadão, Iuri Cordeiro ; Modestia, Silvestre Massimo ; Mattioli, Sarah Viana ; Junior, Ricardo Rosa ; Zalmas, Lykourgos‐Panagiotis ; Fang, Yun ; Petsalaki, Evangelia ; Krieger, José Eduardo</creator><creatorcontrib>Pinheiro‐de‐Sousa, Iguaracy ; Fonseca‐Alaniz, Miriam Helena ; Giudice, Girolamo ; Valadão, Iuri Cordeiro ; Modestia, Silvestre Massimo ; Mattioli, Sarah Viana ; Junior, Ricardo Rosa ; Zalmas, Lykourgos‐Panagiotis ; Fang, Yun ; Petsalaki, Evangelia ; Krieger, José Eduardo</creatorcontrib><description>Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro‐ and anti‐ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro‐ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti‐ED network was enriched in hypoxia, angiogenesis and cancer‐related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease‐specific candidate drug targets for endothelial dysfunction.
Synopsis
Multi‐omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.
Multi‐omics data integration of endothelial cells treated with mimics of major cardiovascular disease factors identified 81 putative endothelial dysfunction (ED) genes.
Upon siRNA‐mediated gene knockdown, 83% of ED gene candidates affected at least one ED phenotype (26 exacerbating and 31 ameliorating the ED phenotypes).
The analyses reveal emergent properties of disease networks, distinguishing between adaptation and rewiring for survival and those associated with deregulation that can be targeted for ED treatment.
An orthogonal drug screen on treated endothelial cells provided additional support for DUSP1, IL6 and CCL2 as putative targets for ED.
Multi‐omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.</description><identifier>ISSN: 1744-4292</identifier><identifier>EISSN: 1744-4292</identifier><identifier>DOI: 10.15252/msb.202211462</identifier><identifier>PMID: 38031960</identifier><language>eng</language><publisher>England: EMBO Press</publisher><subject>Angiogenesis ; Biology ; Data integration ; Drug development ; drug targets ; endothelial dysfunction ; Endothelium ; Epigenetics ; Gene expression ; Gene silencing ; Genes ; Genetic screening ; Genomes ; Hypoxia ; Inflammation ; Molecular modelling ; Monocyte chemoattractant protein 1 ; Network analysis ; Oxidative stress ; Phenotypes ; Principal components analysis ; Risk factors ; RNA, Small Interfering ; Shear stress ; siRNA ; Systems Biology ; Target recognition ; Therapeutic targets ; Transcription factors</subject><ispartof>Molecular systems biology, 2023-12, Vol.19 (12), p.e11462-n/a</ispartof><rights>2023 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2023 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4782-4b9d819c6244a20b3e5f7d77be12de2e458c26411c146d804d58fcdfa709f18d3</citedby><cites>FETCH-LOGICAL-c4782-4b9d819c6244a20b3e5f7d77be12de2e458c26411c146d804d58fcdfa709f18d3</cites><orcidid>0000-0002-4323-1613 ; 0000-0001-5059-5952 ; 0000-0002-5359-8208 ; 0000-0002-8294-2995 ; 0000-0001-5464-1792 ; 0000-0002-3956-3279 ; 0000-0003-2358-9463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.15252%2Fmsb.202211462$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2898208232?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11561,25752,27923,27924,37011,37012,44589,46051,46475</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38031960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinheiro‐de‐Sousa, Iguaracy</creatorcontrib><creatorcontrib>Fonseca‐Alaniz, Miriam Helena</creatorcontrib><creatorcontrib>Giudice, Girolamo</creatorcontrib><creatorcontrib>Valadão, Iuri Cordeiro</creatorcontrib><creatorcontrib>Modestia, Silvestre Massimo</creatorcontrib><creatorcontrib>Mattioli, Sarah Viana</creatorcontrib><creatorcontrib>Junior, Ricardo Rosa</creatorcontrib><creatorcontrib>Zalmas, Lykourgos‐Panagiotis</creatorcontrib><creatorcontrib>Fang, Yun</creatorcontrib><creatorcontrib>Petsalaki, Evangelia</creatorcontrib><creatorcontrib>Krieger, José Eduardo</creatorcontrib><title>Integrated systems biology approach identifies gene targets for endothelial dysfunction</title><title>Molecular systems biology</title><addtitle>Mol Syst Biol</addtitle><description>Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro‐ and anti‐ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro‐ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti‐ED network was enriched in hypoxia, angiogenesis and cancer‐related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease‐specific candidate drug targets for endothelial dysfunction.
Synopsis
Multi‐omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.
Multi‐omics data integration of endothelial cells treated with mimics of major cardiovascular disease factors identified 81 putative endothelial dysfunction (ED) genes.
Upon siRNA‐mediated gene knockdown, 83% of ED gene candidates affected at least one ED phenotype (26 exacerbating and 31 ameliorating the ED phenotypes).
The analyses reveal emergent properties of disease networks, distinguishing between adaptation and rewiring for survival and those associated with deregulation that can be targeted for ED treatment.
An orthogonal drug screen on treated endothelial cells provided additional support for DUSP1, IL6 and CCL2 as putative targets for ED.
Multi‐omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.</description><subject>Angiogenesis</subject><subject>Biology</subject><subject>Data integration</subject><subject>Drug development</subject><subject>drug targets</subject><subject>endothelial dysfunction</subject><subject>Endothelium</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Hypoxia</subject><subject>Inflammation</subject><subject>Molecular modelling</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Network analysis</subject><subject>Oxidative stress</subject><subject>Phenotypes</subject><subject>Principal components analysis</subject><subject>Risk factors</subject><subject>RNA, Small Interfering</subject><subject>Shear stress</subject><subject>siRNA</subject><subject>Systems Biology</subject><subject>Target recognition</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><issn>1744-4292</issn><issn>1744-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc-P1CAYhonRuD_06tE08eJlRvhKWzjqZtVJ1nhQ45FQ-OgyacsINJv-9-LOOhovnvhCHp6PNy8hLxjdsgYaeDOlfgsUgDHewiNyzjrONxwkPP5rPiMXKe0prQUT8JSc1YLWTLb0nHzfzRmHqDPaKq0p45Sq3ocxDGulD4cYtLmtvMU5e-cxVQPOWGUdB8ypciFWONuQb3H0eqzsmtwym-zD_Iw8cXpM-PzhvCTf3l9_vfq4ufn8YXf19mZjeCdgw3tpBZOmBc410L7GxnW263pkYBGQN8JAyxkzJZ4VlNtGOGOd7qh0TNj6kuyOXhv0Xh2in3RcVdBe3V-EOCgdszcjKmFcz2XXtMLpsldqjjXSGlmtG2aELK7XR1eJ_WPBlNXkk8Fx1DOGJSkQsukYo5QX9NU_6D4scS5Jf1ECqIAaCrU9UiaGlCK60wcZVff1qVKfOtVXHrx80C79hPaE_-6rAOII3PkR1__o1Kcv7_64fwKPMqYK</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Pinheiro‐de‐Sousa, Iguaracy</creator><creator>Fonseca‐Alaniz, Miriam Helena</creator><creator>Giudice, Girolamo</creator><creator>Valadão, Iuri Cordeiro</creator><creator>Modestia, Silvestre Massimo</creator><creator>Mattioli, Sarah Viana</creator><creator>Junior, Ricardo Rosa</creator><creator>Zalmas, Lykourgos‐Panagiotis</creator><creator>Fang, Yun</creator><creator>Petsalaki, Evangelia</creator><creator>Krieger, José Eduardo</creator><general>EMBO Press</general><general>Springer Nature</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4323-1613</orcidid><orcidid>https://orcid.org/0000-0001-5059-5952</orcidid><orcidid>https://orcid.org/0000-0002-5359-8208</orcidid><orcidid>https://orcid.org/0000-0002-8294-2995</orcidid><orcidid>https://orcid.org/0000-0001-5464-1792</orcidid><orcidid>https://orcid.org/0000-0002-3956-3279</orcidid><orcidid>https://orcid.org/0000-0003-2358-9463</orcidid></search><sort><creationdate>20231206</creationdate><title>Integrated systems biology approach identifies gene targets for endothelial dysfunction</title><author>Pinheiro‐de‐Sousa, Iguaracy ; Fonseca‐Alaniz, Miriam Helena ; Giudice, Girolamo ; Valadão, Iuri Cordeiro ; Modestia, Silvestre Massimo ; Mattioli, Sarah Viana ; Junior, Ricardo Rosa ; Zalmas, Lykourgos‐Panagiotis ; Fang, Yun ; Petsalaki, Evangelia ; Krieger, José Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4782-4b9d819c6244a20b3e5f7d77be12de2e458c26411c146d804d58fcdfa709f18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiogenesis</topic><topic>Biology</topic><topic>Data integration</topic><topic>Drug development</topic><topic>drug targets</topic><topic>endothelial dysfunction</topic><topic>Endothelium</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Hypoxia</topic><topic>Inflammation</topic><topic>Molecular modelling</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Network analysis</topic><topic>Oxidative stress</topic><topic>Phenotypes</topic><topic>Principal components analysis</topic><topic>Risk factors</topic><topic>RNA, Small Interfering</topic><topic>Shear stress</topic><topic>siRNA</topic><topic>Systems Biology</topic><topic>Target recognition</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinheiro‐de‐Sousa, Iguaracy</creatorcontrib><creatorcontrib>Fonseca‐Alaniz, Miriam Helena</creatorcontrib><creatorcontrib>Giudice, Girolamo</creatorcontrib><creatorcontrib>Valadão, Iuri Cordeiro</creatorcontrib><creatorcontrib>Modestia, Silvestre Massimo</creatorcontrib><creatorcontrib>Mattioli, Sarah Viana</creatorcontrib><creatorcontrib>Junior, Ricardo Rosa</creatorcontrib><creatorcontrib>Zalmas, Lykourgos‐Panagiotis</creatorcontrib><creatorcontrib>Fang, Yun</creatorcontrib><creatorcontrib>Petsalaki, Evangelia</creatorcontrib><creatorcontrib>Krieger, José Eduardo</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Proquest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Molecular systems biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinheiro‐de‐Sousa, Iguaracy</au><au>Fonseca‐Alaniz, Miriam Helena</au><au>Giudice, Girolamo</au><au>Valadão, Iuri Cordeiro</au><au>Modestia, Silvestre Massimo</au><au>Mattioli, Sarah Viana</au><au>Junior, Ricardo Rosa</au><au>Zalmas, Lykourgos‐Panagiotis</au><au>Fang, Yun</au><au>Petsalaki, Evangelia</au><au>Krieger, José Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated systems biology approach identifies gene targets for endothelial dysfunction</atitle><jtitle>Molecular systems biology</jtitle><addtitle>Mol Syst Biol</addtitle><date>2023-12-06</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>e11462</spage><epage>n/a</epage><pages>e11462-n/a</pages><issn>1744-4292</issn><eissn>1744-4292</eissn><abstract>Endothelial dysfunction (ED) is critical in the development and progression of cardiovascular (CV) disorders, yet effective therapeutic targets for ED remain elusive due to limited understanding of its underlying molecular mechanisms. To address this gap, we employed a systems biology approach to identify potential targets for ED. Our study combined multi omics data integration, with siRNA screening, high content imaging and network analysis to prioritise key ED genes and identify a pro‐ and anti‐ED network. We found 26 genes that, upon silencing, exacerbated the ED phenotypes tested, and network propagation identified a pro‐ED network enriched in functions associated with inflammatory responses. Conversely, 31 genes ameliorated ED phenotypes, pointing to potential ED targets, and the respective anti‐ED network was enriched in hypoxia, angiogenesis and cancer‐related processes. An independent screen with 17 drugs found general agreement with the trends from our siRNA screen and further highlighted DUSP1, IL6 and CCL2 as potential candidates for targeting ED. Overall, our results demonstrate the potential of integrated system biology approaches in discovering disease‐specific candidate drug targets for endothelial dysfunction.
Synopsis
Multi‐omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.
Multi‐omics data integration of endothelial cells treated with mimics of major cardiovascular disease factors identified 81 putative endothelial dysfunction (ED) genes.
Upon siRNA‐mediated gene knockdown, 83% of ED gene candidates affected at least one ED phenotype (26 exacerbating and 31 ameliorating the ED phenotypes).
The analyses reveal emergent properties of disease networks, distinguishing between adaptation and rewiring for survival and those associated with deregulation that can be targeted for ED treatment.
An orthogonal drug screen on treated endothelial cells provided additional support for DUSP1, IL6 and CCL2 as putative targets for ED.
Multi‐omics data integration, genetic and pharmacological perturbations, and network analysis on endothelial cells are combined to identify endothelial dysfunction network signatures and prioritise candidate therapeutic targets.</abstract><cop>England</cop><pub>EMBO Press</pub><pmid>38031960</pmid><doi>10.15252/msb.202211462</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-4323-1613</orcidid><orcidid>https://orcid.org/0000-0001-5059-5952</orcidid><orcidid>https://orcid.org/0000-0002-5359-8208</orcidid><orcidid>https://orcid.org/0000-0002-8294-2995</orcidid><orcidid>https://orcid.org/0000-0001-5464-1792</orcidid><orcidid>https://orcid.org/0000-0002-3956-3279</orcidid><orcidid>https://orcid.org/0000-0003-2358-9463</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-4292 |
ispartof | Molecular systems biology, 2023-12, Vol.19 (12), p.e11462-n/a |
issn | 1744-4292 1744-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8cfb497568fa4b99a4e3e03e13a51c89 |
source | Full-Text Journals in Chemistry (Open access); Publicly Available Content (ProQuest); Wiley Open Access; PubMed Central |
subjects | Angiogenesis Biology Data integration Drug development drug targets endothelial dysfunction Endothelium Epigenetics Gene expression Gene silencing Genes Genetic screening Genomes Hypoxia Inflammation Molecular modelling Monocyte chemoattractant protein 1 Network analysis Oxidative stress Phenotypes Principal components analysis Risk factors RNA, Small Interfering Shear stress siRNA Systems Biology Target recognition Therapeutic targets Transcription factors |
title | Integrated systems biology approach identifies gene targets for endothelial dysfunction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20systems%20biology%20approach%20identifies%20gene%20targets%20for%20endothelial%20dysfunction&rft.jtitle=Molecular%20systems%20biology&rft.au=Pinheiro%E2%80%90de%E2%80%90Sousa,%20Iguaracy&rft.date=2023-12-06&rft.volume=19&rft.issue=12&rft.spage=e11462&rft.epage=n/a&rft.pages=e11462-n/a&rft.issn=1744-4292&rft.eissn=1744-4292&rft_id=info:doi/10.15252/msb.202211462&rft_dat=%3Cproquest_doaj_%3E2898208232%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4782-4b9d819c6244a20b3e5f7d77be12de2e458c26411c146d804d58fcdfa709f18d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2898208232&rft_id=info:pmid/38031960&rfr_iscdi=true |