Loading…

A novel computational technique using coefficient diagram method for load frequency control in an interconnected power system

This paper proposes a novel load frequency control (LFC) approach formulated on an optimal structure of the coefficient diagram method (CDM) in a two-area thermal power system. As part of a realistic analysis, nonlinearities related to governor dead band (GDB) and generation rate constraint (GRC) ha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Electrical Systems and Information Technology 2022-12, Vol.9 (1), p.1-24, Article 22
Main Authors: Heidary, Jalal, Rastegar, Hassan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a novel load frequency control (LFC) approach formulated on an optimal structure of the coefficient diagram method (CDM) in a two-area thermal power system. As part of a realistic analysis, nonlinearities related to governor dead band (GDB) and generation rate constraint (GRC) have been considered. In this article, a hybrid CDM method is combined with the optimization of its mathematical equations to achieve an innovative controller. Furthermore, a new metaheuristic optimization technique called the water cycle algorithm (WCA) is used to determine the optimal coefficients of the CDM controller. For the purpose of demonstrating the validity of the proposed scheme, a wide range of uncertainties in the dynamic parameters of a nonlinear power system were tested. In addition, a comparative study is presented between the results obtained from a classical integral, CDM alone, optimized fuzzy, optimized PID, and the suggested controller. In this new approach to improved control, algebraic support provides a robust and responsive controller that can provide fast and stable dynamic responses and effectively overcome the detrimental effects of nonlinearities and uncertainties in the parameters of the power system.
ISSN:2314-7172
2314-7172
DOI:10.1186/s43067-022-00062-1