Loading…

Introducing Technical Indicators to Electricity Price Forecasting: A Feature Engineering Study for Linear, Ensemble, and Deep Machine Learning Models

Day-ahead electricity market (DAM) volatility and price forecast errors have grown in recent years. Changing market conditions, epitomised by increasing renewable energy production and rising intraday market trading, have spurred this growth. If forecast accuracies of DAM prices are to improve, new...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-01, Vol.10 (1), p.255
Main Authors: Demir, Sumeyra, Mincev, Krystof, Kok, Koen, Paterakis, Nikolaos G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Day-ahead electricity market (DAM) volatility and price forecast errors have grown in recent years. Changing market conditions, epitomised by increasing renewable energy production and rising intraday market trading, have spurred this growth. If forecast accuracies of DAM prices are to improve, new features capable of capturing the effects of technical or fundamental price drivers must be identified. In this paper, we focus on identifying/engineering technical features capable of capturing the behavioural biases of DAM traders. Technical indicators (TIs), such as Bollinger Bands, Momentum indicators, or exponential moving averages, are widely used across financial markets to identify behavioural biases. To date, TIs have never been applied to the forecasting of DAM prices. We demonstrate how the simple inclusion of TI features in DAM forecasting can significantly boost the regression accuracies of machine learning models; reducing the root mean squared errors of linear, ensemble, and deep model forecasts by up to 4.50%, 5.42%, and 4.09%, respectively. Moreover, tailored TIs are identified for each of these models, highlighting the added explanatory power offered by technical features.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10010255