Loading…
Plasma Enhanced Wet Chemical Surface Activation of TiO2 for the Synthesis of High Performance Photocatalytic Au/TiO2 Nanocomposites
To enhance the effectiveness of TiO2 as a photocatalyst, it was believed that the drawbacks of the large bandgap and the rapid electron-hole recombination can be overcome by coupling TiO2 with plasmonic metal nanoparticles. The incorporation of the nanoparticles onto the TiO2 surface requires a suit...
Saved in:
Published in: | Applied sciences 2020-05, Vol.10 (10), p.3345 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To enhance the effectiveness of TiO2 as a photocatalyst, it was believed that the drawbacks of the large bandgap and the rapid electron-hole recombination can be overcome by coupling TiO2 with plasmonic metal nanoparticles. The incorporation of the nanoparticles onto the TiO2 surface requires a suitable procedure to achieve the proper particle adhesion. In this work, we propose a simple, clean, and effective surface activation of TiO2 using plasma enhanced wet chemical surface treatment. Under only 5 min of plasma treatment in a 3% NH3/3% H2O2 solution, gold nanoparticles were found better adhered onto the TiO2 surface. Hence, the methylene blue degradation rate of the Au/TiO2 under sunlight treated was improved by a factor of 3.25 times in comparison to non-treated Au/TiO2 and by 13 times in comparison to the bare rutile TiO2. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10103345 |