Loading…
On Energy Redistribution for the Nonlinear Parabolized Stability Equations Method
We identify and quantify a seemingly overlook mechanism for energy transfer between adjacent frequency disturbances in the Nonlinear Parabolized Stability Equations method. Physically, this energy transfer results from the finite-bandwidth nature of actual disturbance spectrums versus the common num...
Saved in:
Published in: | Fluids (Basel) 2022-08, Vol.7 (8), p.264 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We identify and quantify a seemingly overlook mechanism for energy transfer between adjacent frequency disturbances in the Nonlinear Parabolized Stability Equations method. Physically, this energy transfer results from the finite-bandwidth nature of actual disturbance spectrums versus the common numerical assumption of a discrete spectrum representation. Both quiet wind tunnel and flight conditions are considered and it is found that, for Mack’s second-mode instability, the mechanism is most significant in the 0.1–1% disturbance amplitude range (based on normalized pressure) and is responsible for a 15–30% increase in predicted disturbance amplitude. |
---|---|
ISSN: | 2311-5521 2311-5521 |
DOI: | 10.3390/fluids7080264 |