Loading…

Efficient, Stable, and Low-Cost PbS Quantum Dot Solar Cells with Cr-Ag Electrodes

PbS quantum dots (QDs) are a promising nanostructured material for solar cells. However, limited works have been done to explore the active layer thickness, layer deposition techniques, stability improvement, and cost reduction for PbS QD solar cells. We address those issues of device fabrication he...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2019-08, Vol.9 (9), p.1205
Main Authors: Khanam, Jobeda J, Foo, Simon Y, Yu, Zhibin, Liu, Tianhan, Mao, Pengsu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PbS quantum dots (QDs) are a promising nanostructured material for solar cells. However, limited works have been done to explore the active layer thickness, layer deposition techniques, stability improvement, and cost reduction for PbS QD solar cells. We address those issues of device fabrication herein and suggest their possible solutions. In our work, to get the maximum current density from a PbS QD solar cell, we estimated the optimized active layer thickness using Matlab simulation. After that, we fabricated a high-performance and low-cost QD photovoltaic (PV) device with the simulated optimized active layer thickness. We implemented this low-cost device using a 10 mg/mL PbS concentration. Here, spin coating and drop-cast layer deposition methods were used and compared. We found that the device prepared by the spin coating method was more efficient than that by the drop cast method. The spin-coated PbS QD solar cell provided 6.5% power conversion efficiency (PCE) for the AM1.5 light spectrum. Besides this, we observed that Cr (chromium) interfaced with the Ag (Cr-Ag) electrode can provide a highly air-stable electrode.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano9091205