Loading…
Multi-omics and immunogenomics analysis revealed PFKFB3 as a targetable hallmark and mediates sunitinib resistance in papillary renal cell carcinoma: in silico study with laboratory verification
Glycolysis-related metabolic reprogramming is a central hallmark of human cancers, especially in renal cell carcinoma. However, the regulatory function of glycolytic signature in papillary RCC has not been well elucidated. In the present study, the glycolysis-immune predictive signature was construc...
Saved in:
Published in: | European journal of medical research 2024-04, Vol.29 (1), p.236-236, Article 236 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycolysis-related metabolic reprogramming is a central hallmark of human cancers, especially in renal cell carcinoma. However, the regulatory function of glycolytic signature in papillary RCC has not been well elucidated. In the present study, the glycolysis-immune predictive signature was constructed and validated using WGCNA, glycolysis-immune clustering analysis. PPI network of DEGs was constructed and visualized. Functional enrichments and patients' overall survival were analyzed. QRT-PCR experiments were performed to detect hub genes' expression and distribution, siRNA technology was used to silence targeted genes; cell proliferation and migration assays were applied to evaluate the biological function. Glucose concentration, lactate secretion, and ATP production were measured. Glycolysis-Immune Related Prognostic Index (GIRPI) was constructed and combined analyzed with single-cell RNA-seq. High-GIRPI signature predicted significantly poorer outcomes and relevant clinical features of pRCC patients. Moreover, GIRPI also participated in several pathways, which affected tumor immune microenvironment and provided potential therapeutic strategy. As a key glycolysis regulator, PFKFB3 could promote renal cancer cell proliferation and migration in vitro. Blocking of PFKFB3 by selective inhibitor PFK-015 or glycolytic inhibitor 2-DG significantly restrained renal cancer cells' neoplastic potential. PFK-015 and sunitinib could synergistically inhibit pRCC cells proliferation. Glycolysis-Immune Risk Signature is closely associated with pRCC prognosis, progression, immune infiltration, and therapeutic response. PFKFB3 may serve as a pivotal glycolysis regulator and mediates Sunitinib resistance in pRCC patients. |
---|---|
ISSN: | 2047-783X 0949-2321 2047-783X |
DOI: | 10.1186/s40001-024-01808-5 |