Loading…
Turning Portunus pelagicus Shells into Biocompatible Scaffolds for Bone Regeneration
Bone tissue engineering (BTE) provides an alternative for addressing bone defects by integrating cells, a scaffold, and bioactive growth factors to stimulate tissue regeneration and repair, resulting in effective bioengineered tissue. This study focuses on repurposing chitosan from blue swimming cra...
Saved in:
Published in: | Biomedicines 2024-08, Vol.12 (8), p.1796 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bone tissue engineering (BTE) provides an alternative for addressing bone defects by integrating cells, a scaffold, and bioactive growth factors to stimulate tissue regeneration and repair, resulting in effective bioengineered tissue. This study focuses on repurposing chitosan from blue swimming crab (
) shell waste as a composite scaffold combined with HAP and COL I to improve biocompatibility, porosity, swelling, and mechanical properties. The composite scaffold demonstrated nearly 60% porosity with diameters ranging from 100-200 μm with an interconnected network that structurally mimics the extracellular matrix. The swelling ratio of the scaffold was measured at 208.43 ± 14.05%, 248.93 ± 4.32%, 280.01 ± 1.26%, 305.44 ± 20.71%, and 310.03 ± 17.94% at 1, 3, 6, 12, and 24 h, respectively. Thus, the
scaffold showed significantly lower degradation ratios of 5.64 ± 1.89%, 14.34 ± 8.59%, 19.57 ± 14.23%, and 29.13 ± 9.87% for 1 to 4 weeks, respectively. The scaffold supports osteoblast attachment and proliferation for 7 days. Waste from
shells has emerged as a prospective source of chitosan with potential application in tissue engineering. |
---|---|
ISSN: | 2227-9059 2227-9059 |
DOI: | 10.3390/biomedicines12081796 |