Loading…

Turning Portunus pelagicus Shells into Biocompatible Scaffolds for Bone Regeneration

Bone tissue engineering (BTE) provides an alternative for addressing bone defects by integrating cells, a scaffold, and bioactive growth factors to stimulate tissue regeneration and repair, resulting in effective bioengineered tissue. This study focuses on repurposing chitosan from blue swimming cra...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicines 2024-08, Vol.12 (8), p.1796
Main Authors: Devi, Louisa Candra, Putra, Hendrik Satria Dwi, Kencana, Nyoman Bayu Wisnu, Olatunji, Ajiteru, Setiawati, Agustina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bone tissue engineering (BTE) provides an alternative for addressing bone defects by integrating cells, a scaffold, and bioactive growth factors to stimulate tissue regeneration and repair, resulting in effective bioengineered tissue. This study focuses on repurposing chitosan from blue swimming crab ( ) shell waste as a composite scaffold combined with HAP and COL I to improve biocompatibility, porosity, swelling, and mechanical properties. The composite scaffold demonstrated nearly 60% porosity with diameters ranging from 100-200 μm with an interconnected network that structurally mimics the extracellular matrix. The swelling ratio of the scaffold was measured at 208.43 ± 14.05%, 248.93 ± 4.32%, 280.01 ± 1.26%, 305.44 ± 20.71%, and 310.03 ± 17.94% at 1, 3, 6, 12, and 24 h, respectively. Thus, the scaffold showed significantly lower degradation ratios of 5.64 ± 1.89%, 14.34 ± 8.59%, 19.57 ± 14.23%, and 29.13 ± 9.87% for 1 to 4 weeks, respectively. The scaffold supports osteoblast attachment and proliferation for 7 days. Waste from shells has emerged as a prospective source of chitosan with potential application in tissue engineering.
ISSN:2227-9059
2227-9059
DOI:10.3390/biomedicines12081796