Loading…
Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays
Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a dif...
Saved in:
Published in: | Biosensors (Basel) 2024-04, Vol.14 (5), p.220 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3 |
container_end_page | |
container_issue | 5 |
container_start_page | 220 |
container_title | Biosensors (Basel) |
container_volume | 14 |
creator | Kremer, Ran Roth, Shira Bross, Avital Danielli, Amos Noam, Yair |
description | Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution. |
doi_str_mv | 10.3390/bios14050220 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8d97cac4e7b148f2bcd5cac9ff9fbfd2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795378482</galeid><doaj_id>oai_doaj_org_article_8d97cac4e7b148f2bcd5cac9ff9fbfd2</doaj_id><sourcerecordid>A795378482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3</originalsourceid><addsrcrecordid>eNptkk1vEzEQhlcIRKvSG2dkiQsHUnb97WOpKI1UhETbs-X1joOjXTvY3kj59zhNWwrCPnhm9Mw7fqVpmrdde0aIaj_1PuaOtqzFuH3RHONWqAUngr58Fh81pzmv23oEFYqI180RkUIyruhxk-6yDyt0C9MmJjOOO2TCgG42pvj77AfkOG5hQN_A5DnBBKFkVCJaTpsUt4DKT0A3ELIvfuvLDkWHLsc5JsgWgoXFZ5Nr93Ka5hBNzmaX3zSvnBkznD68J83d5Zfbi6vF9fevy4vz64WlVJRFJxy2PahOKu6gmuEOg1WYG04UZowzLASzpGaUO9uBoQNRqpdEctIrR06a5UF3iGatN8lPJu10NF7fF2JaaZOKtyNoOShhjaUg-o5Kh3s7sJor55Tr3YCr1oeDVjX9a4Zc9OSrwXE0AeKcNWl5SwQXUlX0_T_oOs4pVKeVYoooyYT4Q61Mne-DiyUZuxfV50IxIiSV-7Fn_6HqHWDyNgZwvtb_avh4aLAp5pzAPfnuWr3fGP18Yyr-7uGvcz_B8AQ_7gf5DSNPu7E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059398577</pqid></control><display><type>article</type><title>Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Kremer, Ran ; Roth, Shira ; Bross, Avital ; Danielli, Amos ; Noam, Yair</creator><creatorcontrib>Kremer, Ran ; Roth, Shira ; Bross, Avital ; Danielli, Amos ; Noam, Yair</creatorcontrib><description>Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution.</description><identifier>ISSN: 2079-6374</identifier><identifier>EISSN: 2079-6374</identifier><identifier>DOI: 10.3390/bios14050220</identifier><identifier>PMID: 38785694</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aggregates ; Algorithms ; Antibodies ; Biomarkers ; Biomarkers - analysis ; Biosensing Techniques ; Biosensors ; Cytokines ; Digital cameras ; Fluorescence ; Fluorescent indicators ; Humans ; image processing ; Immunoassay ; Immunoassay - methods ; Immunoassays ; in vitro diagnostics ; Interleukin 8 ; Interleukin-8 - analysis ; Lasers ; Limit of Detection ; Low concentrations ; magnetic beads ; Magnetic fields ; Methods ; Quantum dots ; Sensitivity analysis ; Signal processing ; Spectrum analysis ; Target detection ; Time measurement ; Zika virus</subject><ispartof>Biosensors (Basel), 2024-04, Vol.14 (5), p.220</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3</cites><orcidid>0000-0002-5281-6787 ; 0000-0002-6112-1071 ; 0000-0002-4091-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059398577?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059398577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,38516,43895,44590,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38785694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kremer, Ran</creatorcontrib><creatorcontrib>Roth, Shira</creatorcontrib><creatorcontrib>Bross, Avital</creatorcontrib><creatorcontrib>Danielli, Amos</creatorcontrib><creatorcontrib>Noam, Yair</creatorcontrib><title>Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays</title><title>Biosensors (Basel)</title><addtitle>Biosensors (Basel)</addtitle><description>Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>Antibodies</subject><subject>Biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Cytokines</subject><subject>Digital cameras</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Humans</subject><subject>image processing</subject><subject>Immunoassay</subject><subject>Immunoassay - methods</subject><subject>Immunoassays</subject><subject>in vitro diagnostics</subject><subject>Interleukin 8</subject><subject>Interleukin-8 - analysis</subject><subject>Lasers</subject><subject>Limit of Detection</subject><subject>Low concentrations</subject><subject>magnetic beads</subject><subject>Magnetic fields</subject><subject>Methods</subject><subject>Quantum dots</subject><subject>Sensitivity analysis</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Target detection</subject><subject>Time measurement</subject><subject>Zika virus</subject><issn>2079-6374</issn><issn>2079-6374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1vEzEQhlcIRKvSG2dkiQsHUnb97WOpKI1UhETbs-X1joOjXTvY3kj59zhNWwrCPnhm9Mw7fqVpmrdde0aIaj_1PuaOtqzFuH3RHONWqAUngr58Fh81pzmv23oEFYqI180RkUIyruhxk-6yDyt0C9MmJjOOO2TCgG42pvj77AfkOG5hQN_A5DnBBKFkVCJaTpsUt4DKT0A3ELIvfuvLDkWHLsc5JsgWgoXFZ5Nr93Ka5hBNzmaX3zSvnBkznD68J83d5Zfbi6vF9fevy4vz64WlVJRFJxy2PahOKu6gmuEOg1WYG04UZowzLASzpGaUO9uBoQNRqpdEctIrR06a5UF3iGatN8lPJu10NF7fF2JaaZOKtyNoOShhjaUg-o5Kh3s7sJor55Tr3YCr1oeDVjX9a4Zc9OSrwXE0AeKcNWl5SwQXUlX0_T_oOs4pVKeVYoooyYT4Q61Mne-DiyUZuxfV50IxIiSV-7Fn_6HqHWDyNgZwvtb_avh4aLAp5pzAPfnuWr3fGP18Yyr-7uGvcz_B8AQ_7gf5DSNPu7E</recordid><startdate>20240428</startdate><enddate>20240428</enddate><creator>Kremer, Ran</creator><creator>Roth, Shira</creator><creator>Bross, Avital</creator><creator>Danielli, Amos</creator><creator>Noam, Yair</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5281-6787</orcidid><orcidid>https://orcid.org/0000-0002-6112-1071</orcidid><orcidid>https://orcid.org/0000-0002-4091-0493</orcidid></search><sort><creationdate>20240428</creationdate><title>Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays</title><author>Kremer, Ran ; Roth, Shira ; Bross, Avital ; Danielli, Amos ; Noam, Yair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>Antibodies</topic><topic>Biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Cytokines</topic><topic>Digital cameras</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Humans</topic><topic>image processing</topic><topic>Immunoassay</topic><topic>Immunoassay - methods</topic><topic>Immunoassays</topic><topic>in vitro diagnostics</topic><topic>Interleukin 8</topic><topic>Interleukin-8 - analysis</topic><topic>Lasers</topic><topic>Limit of Detection</topic><topic>Low concentrations</topic><topic>magnetic beads</topic><topic>Magnetic fields</topic><topic>Methods</topic><topic>Quantum dots</topic><topic>Sensitivity analysis</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Target detection</topic><topic>Time measurement</topic><topic>Zika virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremer, Ran</creatorcontrib><creatorcontrib>Roth, Shira</creatorcontrib><creatorcontrib>Bross, Avital</creatorcontrib><creatorcontrib>Danielli, Amos</creatorcontrib><creatorcontrib>Noam, Yair</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Biosensors (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremer, Ran</au><au>Roth, Shira</au><au>Bross, Avital</au><au>Danielli, Amos</au><au>Noam, Yair</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays</atitle><jtitle>Biosensors (Basel)</jtitle><addtitle>Biosensors (Basel)</addtitle><date>2024-04-28</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>220</spage><pages>220-</pages><issn>2079-6374</issn><eissn>2079-6374</eissn><abstract>Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38785694</pmid><doi>10.3390/bios14050220</doi><orcidid>https://orcid.org/0000-0002-5281-6787</orcidid><orcidid>https://orcid.org/0000-0002-6112-1071</orcidid><orcidid>https://orcid.org/0000-0002-4091-0493</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6374 |
ispartof | Biosensors (Basel), 2024-04, Vol.14 (5), p.220 |
issn | 2079-6374 2079-6374 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8d97cac4e7b148f2bcd5cac9ff9fbfd2 |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest); Coronavirus Research Database |
subjects | Aggregates Algorithms Antibodies Biomarkers Biomarkers - analysis Biosensing Techniques Biosensors Cytokines Digital cameras Fluorescence Fluorescent indicators Humans image processing Immunoassay Immunoassay - methods Immunoassays in vitro diagnostics Interleukin 8 Interleukin-8 - analysis Lasers Limit of Detection Low concentrations magnetic beads Magnetic fields Methods Quantum dots Sensitivity analysis Signal processing Spectrum analysis Target detection Time measurement Zika virus |
title | Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Temporally%20and%20Spatially%20Resolved%20Measurements%20to%20Improve%20the%20Sensitivity%20of%20Fluorescence-Based%20Immunoassays&rft.jtitle=Biosensors%20(Basel)&rft.au=Kremer,%20Ran&rft.date=2024-04-28&rft.volume=14&rft.issue=5&rft.spage=220&rft.pages=220-&rft.issn=2079-6374&rft.eissn=2079-6374&rft_id=info:doi/10.3390/bios14050220&rft_dat=%3Cgale_doaj_%3EA795378482%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059398577&rft_id=info:pmid/38785694&rft_galeid=A795378482&rfr_iscdi=true |