Loading…

Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays

Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a dif...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors (Basel) 2024-04, Vol.14 (5), p.220
Main Authors: Kremer, Ran, Roth, Shira, Bross, Avital, Danielli, Amos, Noam, Yair
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3
container_end_page
container_issue 5
container_start_page 220
container_title Biosensors (Basel)
container_volume 14
creator Kremer, Ran
Roth, Shira
Bross, Avital
Danielli, Amos
Noam, Yair
description Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution.
doi_str_mv 10.3390/bios14050220
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8d97cac4e7b148f2bcd5cac9ff9fbfd2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795378482</galeid><doaj_id>oai_doaj_org_article_8d97cac4e7b148f2bcd5cac9ff9fbfd2</doaj_id><sourcerecordid>A795378482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3</originalsourceid><addsrcrecordid>eNptkk1vEzEQhlcIRKvSG2dkiQsHUnb97WOpKI1UhETbs-X1joOjXTvY3kj59zhNWwrCPnhm9Mw7fqVpmrdde0aIaj_1PuaOtqzFuH3RHONWqAUngr58Fh81pzmv23oEFYqI180RkUIyruhxk-6yDyt0C9MmJjOOO2TCgG42pvj77AfkOG5hQN_A5DnBBKFkVCJaTpsUt4DKT0A3ELIvfuvLDkWHLsc5JsgWgoXFZ5Nr93Ka5hBNzmaX3zSvnBkznD68J83d5Zfbi6vF9fevy4vz64WlVJRFJxy2PahOKu6gmuEOg1WYG04UZowzLASzpGaUO9uBoQNRqpdEctIrR06a5UF3iGatN8lPJu10NF7fF2JaaZOKtyNoOShhjaUg-o5Kh3s7sJor55Tr3YCr1oeDVjX9a4Zc9OSrwXE0AeKcNWl5SwQXUlX0_T_oOs4pVKeVYoooyYT4Q61Mne-DiyUZuxfV50IxIiSV-7Fn_6HqHWDyNgZwvtb_avh4aLAp5pzAPfnuWr3fGP18Yyr-7uGvcz_B8AQ_7gf5DSNPu7E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059398577</pqid></control><display><type>article</type><title>Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Kremer, Ran ; Roth, Shira ; Bross, Avital ; Danielli, Amos ; Noam, Yair</creator><creatorcontrib>Kremer, Ran ; Roth, Shira ; Bross, Avital ; Danielli, Amos ; Noam, Yair</creatorcontrib><description>Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution.</description><identifier>ISSN: 2079-6374</identifier><identifier>EISSN: 2079-6374</identifier><identifier>DOI: 10.3390/bios14050220</identifier><identifier>PMID: 38785694</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aggregates ; Algorithms ; Antibodies ; Biomarkers ; Biomarkers - analysis ; Biosensing Techniques ; Biosensors ; Cytokines ; Digital cameras ; Fluorescence ; Fluorescent indicators ; Humans ; image processing ; Immunoassay ; Immunoassay - methods ; Immunoassays ; in vitro diagnostics ; Interleukin 8 ; Interleukin-8 - analysis ; Lasers ; Limit of Detection ; Low concentrations ; magnetic beads ; Magnetic fields ; Methods ; Quantum dots ; Sensitivity analysis ; Signal processing ; Spectrum analysis ; Target detection ; Time measurement ; Zika virus</subject><ispartof>Biosensors (Basel), 2024-04, Vol.14 (5), p.220</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3</cites><orcidid>0000-0002-5281-6787 ; 0000-0002-6112-1071 ; 0000-0002-4091-0493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059398577?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059398577?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,38516,43895,44590,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38785694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kremer, Ran</creatorcontrib><creatorcontrib>Roth, Shira</creatorcontrib><creatorcontrib>Bross, Avital</creatorcontrib><creatorcontrib>Danielli, Amos</creatorcontrib><creatorcontrib>Noam, Yair</creatorcontrib><title>Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays</title><title>Biosensors (Basel)</title><addtitle>Biosensors (Basel)</addtitle><description>Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>Antibodies</subject><subject>Biomarkers</subject><subject>Biomarkers - analysis</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Cytokines</subject><subject>Digital cameras</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>Humans</subject><subject>image processing</subject><subject>Immunoassay</subject><subject>Immunoassay - methods</subject><subject>Immunoassays</subject><subject>in vitro diagnostics</subject><subject>Interleukin 8</subject><subject>Interleukin-8 - analysis</subject><subject>Lasers</subject><subject>Limit of Detection</subject><subject>Low concentrations</subject><subject>magnetic beads</subject><subject>Magnetic fields</subject><subject>Methods</subject><subject>Quantum dots</subject><subject>Sensitivity analysis</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Target detection</subject><subject>Time measurement</subject><subject>Zika virus</subject><issn>2079-6374</issn><issn>2079-6374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1vEzEQhlcIRKvSG2dkiQsHUnb97WOpKI1UhETbs-X1joOjXTvY3kj59zhNWwrCPnhm9Mw7fqVpmrdde0aIaj_1PuaOtqzFuH3RHONWqAUngr58Fh81pzmv23oEFYqI180RkUIyruhxk-6yDyt0C9MmJjOOO2TCgG42pvj77AfkOG5hQN_A5DnBBKFkVCJaTpsUt4DKT0A3ELIvfuvLDkWHLsc5JsgWgoXFZ5Nr93Ka5hBNzmaX3zSvnBkznD68J83d5Zfbi6vF9fevy4vz64WlVJRFJxy2PahOKu6gmuEOg1WYG04UZowzLASzpGaUO9uBoQNRqpdEctIrR06a5UF3iGatN8lPJu10NF7fF2JaaZOKtyNoOShhjaUg-o5Kh3s7sJor55Tr3YCr1oeDVjX9a4Zc9OSrwXE0AeKcNWl5SwQXUlX0_T_oOs4pVKeVYoooyYT4Q61Mne-DiyUZuxfV50IxIiSV-7Fn_6HqHWDyNgZwvtb_avh4aLAp5pzAPfnuWr3fGP18Yyr-7uGvcz_B8AQ_7gf5DSNPu7E</recordid><startdate>20240428</startdate><enddate>20240428</enddate><creator>Kremer, Ran</creator><creator>Roth, Shira</creator><creator>Bross, Avital</creator><creator>Danielli, Amos</creator><creator>Noam, Yair</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5281-6787</orcidid><orcidid>https://orcid.org/0000-0002-6112-1071</orcidid><orcidid>https://orcid.org/0000-0002-4091-0493</orcidid></search><sort><creationdate>20240428</creationdate><title>Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays</title><author>Kremer, Ran ; Roth, Shira ; Bross, Avital ; Danielli, Amos ; Noam, Yair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>Antibodies</topic><topic>Biomarkers</topic><topic>Biomarkers - analysis</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Cytokines</topic><topic>Digital cameras</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>Humans</topic><topic>image processing</topic><topic>Immunoassay</topic><topic>Immunoassay - methods</topic><topic>Immunoassays</topic><topic>in vitro diagnostics</topic><topic>Interleukin 8</topic><topic>Interleukin-8 - analysis</topic><topic>Lasers</topic><topic>Limit of Detection</topic><topic>Low concentrations</topic><topic>magnetic beads</topic><topic>Magnetic fields</topic><topic>Methods</topic><topic>Quantum dots</topic><topic>Sensitivity analysis</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Target detection</topic><topic>Time measurement</topic><topic>Zika virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kremer, Ran</creatorcontrib><creatorcontrib>Roth, Shira</creatorcontrib><creatorcontrib>Bross, Avital</creatorcontrib><creatorcontrib>Danielli, Amos</creatorcontrib><creatorcontrib>Noam, Yair</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>Biosensors (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kremer, Ran</au><au>Roth, Shira</au><au>Bross, Avital</au><au>Danielli, Amos</au><au>Noam, Yair</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays</atitle><jtitle>Biosensors (Basel)</jtitle><addtitle>Biosensors (Basel)</addtitle><date>2024-04-28</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>220</spage><pages>220-</pages><issn>2079-6374</issn><eissn>2079-6374</eissn><abstract>Detecting low concentrations of biomarkers is essential in clinical laboratories. To improve analytical sensitivity, especially in identifying fluorescently labeled molecules, typical optical detection systems, consisting of a photodetector or camera, utilize time-resolved measurements. Taking a different approach, magnetic modulation biosensing (MMB) is a novel technology that combines fluorescently labeled probes and magnetic particles to create a sandwich assay with the target molecules. By concentrating the target molecules and then using time-resolved measurements, MMB provides the rapid and highly sensitive detection of various biomarkers. Here, we propose a novel signal-processing algorithm that enhances the detection and estimation of target molecules at low concentrations. By incorporating both temporally and spatially resolved measurements using human interleukin-8 as a target molecule, we show that the new algorithm provides a 2-4-fold improvement in the limit of detection and an ~25% gain in quantitative resolution.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38785694</pmid><doi>10.3390/bios14050220</doi><orcidid>https://orcid.org/0000-0002-5281-6787</orcidid><orcidid>https://orcid.org/0000-0002-6112-1071</orcidid><orcidid>https://orcid.org/0000-0002-4091-0493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6374
ispartof Biosensors (Basel), 2024-04, Vol.14 (5), p.220
issn 2079-6374
2079-6374
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8d97cac4e7b148f2bcd5cac9ff9fbfd2
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Coronavirus Research Database
subjects Aggregates
Algorithms
Antibodies
Biomarkers
Biomarkers - analysis
Biosensing Techniques
Biosensors
Cytokines
Digital cameras
Fluorescence
Fluorescent indicators
Humans
image processing
Immunoassay
Immunoassay - methods
Immunoassays
in vitro diagnostics
Interleukin 8
Interleukin-8 - analysis
Lasers
Limit of Detection
Low concentrations
magnetic beads
Magnetic fields
Methods
Quantum dots
Sensitivity analysis
Signal processing
Spectrum analysis
Target detection
Time measurement
Zika virus
title Using Temporally and Spatially Resolved Measurements to Improve the Sensitivity of Fluorescence-Based Immunoassays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Temporally%20and%20Spatially%20Resolved%20Measurements%20to%20Improve%20the%20Sensitivity%20of%20Fluorescence-Based%20Immunoassays&rft.jtitle=Biosensors%20(Basel)&rft.au=Kremer,%20Ran&rft.date=2024-04-28&rft.volume=14&rft.issue=5&rft.spage=220&rft.pages=220-&rft.issn=2079-6374&rft.eissn=2079-6374&rft_id=info:doi/10.3390/bios14050220&rft_dat=%3Cgale_doaj_%3EA795378482%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-17f2cbe91896fe0796f2ec926a639255652775c363946fc1ea4d399b83863b9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059398577&rft_id=info:pmid/38785694&rft_galeid=A795378482&rfr_iscdi=true