Loading…

Transdermal delivery of fluorescein isothiocyanate-dextrans using the combination of microneedles and low-frequency sonophoresis

This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers, in particular, the combination of microneedles patch (MNs patch) and low-frequency sonophoresis (SN). The hydrophilic macromolecule drug fluorescein isothiocya...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of pharmceutical sciences 2015-10, Vol.10 (5), p.415-424
Main Authors: Pamornpathomkul, Boonnada, Duangjit, Sureewan, Laohapatarapant, Suvida, Rojanarata, Theerasak, Opanasopit, Praneet, Ngawhirunpat, Tanasait
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers, in particular, the combination of microneedles patch (MNs patch) and low-frequency sonophoresis (SN). The hydrophilic macromolecule drug fluorescein isothiocyanate (FITC)-dextrans (FD-4: MW 4.4 kDa) was used as the model drug in our experimental design. In this study, excised porcine skin was used to investigate and optimize the key parameters that determine effective MNs- and SN-facilitated FD-4 delivery. In vitro skin permeation experiments revealed that the combination of MNs patch with SN had a superior enhancing effect of skin permeation for FD-4 compared to MNs alone, SN alone or untreated skin, respectively. The optimal parameters for the combination of MNs and SN included the following: 10 N insertion force of MNs, 4 W/cm2 SN intensity, 6 mm radiation diameter of the SN probe, 2 min application time, and the continuous mode duty cycle of SN. In addition, vertical sections of skin, clearly observed under a confocal microscope, confirmed that the combination of MNs and SN enhanced permeation of FD-4 into the deep skin layers. These studies suggest that the combination of MNs and SN techniques could have great potential in the delivery of hydrophilic macromolecules into deep skin.
ISSN:1818-0876
2221-285X
DOI:10.1016/j.ajps.2015.05.002