Loading…
A Stepwise Algorithm for Linearly Combining Biomarkers under Youden Index Maximization
Combining multiple biomarkers to provide predictive models with a greater discriminatory ability is a discipline that has received attention in recent years. Choosing the probability threshold that corresponds to the highest combined marker accuracy is key in disease diagnosis. The Youden index is a...
Saved in:
Published in: | Mathematics (Basel) 2022-04, Vol.10 (8), p.1221 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Combining multiple biomarkers to provide predictive models with a greater discriminatory ability is a discipline that has received attention in recent years. Choosing the probability threshold that corresponds to the highest combined marker accuracy is key in disease diagnosis. The Youden index is a statistical metric that provides an appropriate synthetic index for diagnostic accuracy and a good criterion for choosing a cut-off point to dichotomize a biomarker. In this study, we present a new stepwise algorithm for linearly combining continuous biomarkers to maximize the Youden index. To investigate the performance of our algorithm, we analyzed a wide range of simulated scenarios and compared its performance with that of five other linear combination methods in the literature (a stepwise approach introduced by Yin and Tian, the min-max approach, logistic regression, a parametric approach under multivariate normality and a non-parametric kernel smoothing approach). The obtained results show that our proposed stepwise approach showed similar results to other algorithms in normal simulated scenarios and outperforms all other algorithms in non-normal simulated scenarios. In scenarios of biomarkers with the same means and a different covariance matrix for the diseased and non-diseased population, the min-max approach outperforms the rest. The methods were also applied on two real datasets (to discriminate Duchenne muscular dystrophy and prostate cancer), whose results also showed a higher predictive ability in our algorithm in the prostate cancer database. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10081221 |