Loading…
The Performance Analysis of a Novel Sterilizable Trombe Wall Based on the Combined Effect of Heat and UV Light
A Trombe wall is a widely applied heating system that has a single function. An interesting thing is that both the solar heat and UV light received by a Trombe wall have an air sterilization effect. Here, the air sterilization and thermal performances of a Trombe wall in different cities were invest...
Saved in:
Published in: | Buildings (Basel) 2024-05, Vol.14 (5), p.1210 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Trombe wall is a widely applied heating system that has a single function. An interesting thing is that both the solar heat and UV light received by a Trombe wall have an air sterilization effect. Here, the air sterilization and thermal performances of a Trombe wall in different cities were investigated based on an established heat and mass transfer model. The main results were as follows: (1) UV dose accumulation and high temperature were the most important factors that affect the UV and thermal sterilization performance, respectively. The Trombe wall had the thermal characteristics of high accumulation of UV doses in the morning and afternoon and a high temperature level at noon, which was a good match with the UV and thermal sterilization process. (2) A typical sterilization process in a Trombe wall was divided into three areas: the UV inactivation area, UV and thermal inactivation area and UV inactivation area. (3) The weather conditions played an important role in the sterilization performance. UV sterilization was dominant in cloudy weather, and thermal sterilization was dominant in sunny weather. (4) In Nanjing, Shanghai, Xining and Guangzhou, the average daily clean air volumes in heating months were 39.4, 33.5, 32.2 and 39.8 m3/m2, respectively. (5) When the wall height increased from 1.5 m to 3.5 m, the average daily clean air volume in heating months increased from 31.7 to 43.6 m3/m2. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings14051210 |