Loading…

Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency

In recent years the interest for the harvest of energy with micro thermoelectric generators ( μ TEG) has increased, due to its advantages compared to technologies that use fossil fuels. There are three ways to improve the performance of the device, by modifying its structure, type of material and op...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2019-02, Vol.21 (3), p.224
Main Authors: Badillo-Ruiz, Carlos Alberto, Olivares-Robles, Miguel Angel, Chanona-Perez, Jose Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-c833ec358ed236305a3b82501e10b959121f9457d53b87d7c69a1e24f320f44b3
cites cdi_FETCH-LOGICAL-c446t-c833ec358ed236305a3b82501e10b959121f9457d53b87d7c69a1e24f320f44b3
container_end_page
container_issue 3
container_start_page 224
container_title Entropy (Basel, Switzerland)
container_volume 21
creator Badillo-Ruiz, Carlos Alberto
Olivares-Robles, Miguel Angel
Chanona-Perez, Jose Jorge
description In recent years the interest for the harvest of energy with micro thermoelectric generators ( μ TEG) has increased, due to its advantages compared to technologies that use fossil fuels. There are three ways to improve the performance of the device, by modifying its structure, type of material and operation control. In this study, the role of the load resistance R L on the performance of a μ TEG with nanostructured materials is investigated. The interaction of the load resistance with the thermoelements exhibits interesting features, arising from the coupling of the temperature-dependent electrical and thermal transport properties at different temperature ranges and the architecture of nanostructured thermoelectric materials. This coupling results in inflections on the efficiency, i.e., maximum and minimum values of the efficiency at higher temperatures, 600–900 K. We show the explicit dependence of the performance of the μ TEG in terms of the load resistance and discuss the underlying physics. The unusual features of the efficiency of nanostructured thermoelectric materials are a result of the behavior of the power factor and the nonequilibrium properties of the system. We also analyze the effect of the geometric shape of the thermoelements on the device. We determine the performance of the μ TEG, evaluating the generation power and its efficiency. The results show that the efficiency of the device can decrease or increase depending on the value of R L , while the power decreases with an increase of the load resistance.
doi_str_mv 10.3390/e21030224
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ddbcc8b21664c5d8abb40c6242f31e4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8ddbcc8b21664c5d8abb40c6242f31e4</doaj_id><sourcerecordid>2466771585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-c833ec358ed236305a3b82501e10b959121f9457d53b87d7c69a1e24f320f44b3</originalsourceid><addsrcrecordid>eNpdklFvFCEQgDdGY2v1wX9A4os-rAID7K4PJqbWesmpidZnwsJwx7kHFViT_nv3vKaxPg0ZvvkyDNM0zxl9DTDQN8gZBcq5eNCcMjoMrQBKH_5zPmmelLKjlANn6nFzAsCVGgQ9bX5-wBI2kSRPvpiY2u81z7bOGR35HGxO7dUW8z7hhLbmYMklRsympvyWrJNx5NtSXqqJFomJjqyiP5AhxUJCJHWL5ML7YANGe_O0eeTNVPDZbTxrfny8uDr_1K6_Xq7O369bK4Sqre0B0ILs0XFQQKWBseeSMmR0HOTAOPODkJ2TS75znVWDYciFB069ECOcNauj1yWz09c57E2-0ckE_TeR8kabXIOdUPfOjdb24zIWJax0vRlHQa3igntgKBbXu6Preh736CzGms10T3r_Joat3qTfupNMdPQgeHkryOnXjKXqfSgWp8lETHPRXCjVdUz2ckFf_Ifu0pzjMirNpehheTSDhXp1pJbfKSWjv2uGUX1YB323DvAHlIGlRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548394513</pqid></control><display><type>article</type><title>Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency</title><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><creator>Badillo-Ruiz, Carlos Alberto ; Olivares-Robles, Miguel Angel ; Chanona-Perez, Jose Jorge</creator><creatorcontrib>Badillo-Ruiz, Carlos Alberto ; Olivares-Robles, Miguel Angel ; Chanona-Perez, Jose Jorge</creatorcontrib><description>In recent years the interest for the harvest of energy with micro thermoelectric generators ( μ TEG) has increased, due to its advantages compared to technologies that use fossil fuels. There are three ways to improve the performance of the device, by modifying its structure, type of material and operation control. In this study, the role of the load resistance R L on the performance of a μ TEG with nanostructured materials is investigated. The interaction of the load resistance with the thermoelements exhibits interesting features, arising from the coupling of the temperature-dependent electrical and thermal transport properties at different temperature ranges and the architecture of nanostructured thermoelectric materials. This coupling results in inflections on the efficiency, i.e., maximum and minimum values of the efficiency at higher temperatures, 600–900 K. We show the explicit dependence of the performance of the μ TEG in terms of the load resistance and discuss the underlying physics. The unusual features of the efficiency of nanostructured thermoelectric materials are a result of the behavior of the power factor and the nonequilibrium properties of the system. We also analyze the effect of the geometric shape of the thermoelements on the device. We determine the performance of the μ TEG, evaluating the generation power and its efficiency. The results show that the efficiency of the device can decrease or increase depending on the value of R L , while the power decreases with an increase of the load resistance.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e21030224</identifier><identifier>PMID: 33266940</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Coupling ; Efficiency ; Electric currents ; Energy harvesting ; Fossil fuels ; Generators ; Heat conductivity ; Heat transfer ; Load resistance ; micro-generator ; Nanostructure ; Nanostructured materials ; nanostructuring ; Partial differential equations ; Performance enhancement ; Performance evaluation ; Point defects ; Power factor ; Shape effects ; Temperature dependence ; thermoelectric ; Thermoelectric generators ; Thermoelectric materials ; Thomson effect ; Transport properties</subject><ispartof>Entropy (Basel, Switzerland), 2019-02, Vol.21 (3), p.224</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-c833ec358ed236305a3b82501e10b959121f9457d53b87d7c69a1e24f320f44b3</citedby><cites>FETCH-LOGICAL-c446t-c833ec358ed236305a3b82501e10b959121f9457d53b87d7c69a1e24f320f44b3</cites><orcidid>0000-0003-2886-0347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548394513/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548394513?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Badillo-Ruiz, Carlos Alberto</creatorcontrib><creatorcontrib>Olivares-Robles, Miguel Angel</creatorcontrib><creatorcontrib>Chanona-Perez, Jose Jorge</creatorcontrib><title>Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency</title><title>Entropy (Basel, Switzerland)</title><description>In recent years the interest for the harvest of energy with micro thermoelectric generators ( μ TEG) has increased, due to its advantages compared to technologies that use fossil fuels. There are three ways to improve the performance of the device, by modifying its structure, type of material and operation control. In this study, the role of the load resistance R L on the performance of a μ TEG with nanostructured materials is investigated. The interaction of the load resistance with the thermoelements exhibits interesting features, arising from the coupling of the temperature-dependent electrical and thermal transport properties at different temperature ranges and the architecture of nanostructured thermoelectric materials. This coupling results in inflections on the efficiency, i.e., maximum and minimum values of the efficiency at higher temperatures, 600–900 K. We show the explicit dependence of the performance of the μ TEG in terms of the load resistance and discuss the underlying physics. The unusual features of the efficiency of nanostructured thermoelectric materials are a result of the behavior of the power factor and the nonequilibrium properties of the system. We also analyze the effect of the geometric shape of the thermoelements on the device. We determine the performance of the μ TEG, evaluating the generation power and its efficiency. The results show that the efficiency of the device can decrease or increase depending on the value of R L , while the power decreases with an increase of the load resistance.</description><subject>Coupling</subject><subject>Efficiency</subject><subject>Electric currents</subject><subject>Energy harvesting</subject><subject>Fossil fuels</subject><subject>Generators</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Load resistance</subject><subject>micro-generator</subject><subject>Nanostructure</subject><subject>Nanostructured materials</subject><subject>nanostructuring</subject><subject>Partial differential equations</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Shape effects</subject><subject>Temperature dependence</subject><subject>thermoelectric</subject><subject>Thermoelectric generators</subject><subject>Thermoelectric materials</subject><subject>Thomson effect</subject><subject>Transport properties</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdklFvFCEQgDdGY2v1wX9A4os-rAID7K4PJqbWesmpidZnwsJwx7kHFViT_nv3vKaxPg0ZvvkyDNM0zxl9DTDQN8gZBcq5eNCcMjoMrQBKH_5zPmmelLKjlANn6nFzAsCVGgQ9bX5-wBI2kSRPvpiY2u81z7bOGR35HGxO7dUW8z7hhLbmYMklRsympvyWrJNx5NtSXqqJFomJjqyiP5AhxUJCJHWL5ML7YANGe_O0eeTNVPDZbTxrfny8uDr_1K6_Xq7O369bK4Sqre0B0ILs0XFQQKWBseeSMmR0HOTAOPODkJ2TS75znVWDYciFB069ECOcNauj1yWz09c57E2-0ckE_TeR8kabXIOdUPfOjdb24zIWJax0vRlHQa3igntgKBbXu6Preh736CzGms10T3r_Joat3qTfupNMdPQgeHkryOnXjKXqfSgWp8lETHPRXCjVdUz2ckFf_Ifu0pzjMirNpehheTSDhXp1pJbfKSWjv2uGUX1YB323DvAHlIGlRg</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>Badillo-Ruiz, Carlos Alberto</creator><creator>Olivares-Robles, Miguel Angel</creator><creator>Chanona-Perez, Jose Jorge</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2886-0347</orcidid></search><sort><creationdate>20190227</creationdate><title>Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency</title><author>Badillo-Ruiz, Carlos Alberto ; Olivares-Robles, Miguel Angel ; Chanona-Perez, Jose Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-c833ec358ed236305a3b82501e10b959121f9457d53b87d7c69a1e24f320f44b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coupling</topic><topic>Efficiency</topic><topic>Electric currents</topic><topic>Energy harvesting</topic><topic>Fossil fuels</topic><topic>Generators</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Load resistance</topic><topic>micro-generator</topic><topic>Nanostructure</topic><topic>Nanostructured materials</topic><topic>nanostructuring</topic><topic>Partial differential equations</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Shape effects</topic><topic>Temperature dependence</topic><topic>thermoelectric</topic><topic>Thermoelectric generators</topic><topic>Thermoelectric materials</topic><topic>Thomson effect</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badillo-Ruiz, Carlos Alberto</creatorcontrib><creatorcontrib>Olivares-Robles, Miguel Angel</creatorcontrib><creatorcontrib>Chanona-Perez, Jose Jorge</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badillo-Ruiz, Carlos Alberto</au><au>Olivares-Robles, Miguel Angel</au><au>Chanona-Perez, Jose Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2019-02-27</date><risdate>2019</risdate><volume>21</volume><issue>3</issue><spage>224</spage><pages>224-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>In recent years the interest for the harvest of energy with micro thermoelectric generators ( μ TEG) has increased, due to its advantages compared to technologies that use fossil fuels. There are three ways to improve the performance of the device, by modifying its structure, type of material and operation control. In this study, the role of the load resistance R L on the performance of a μ TEG with nanostructured materials is investigated. The interaction of the load resistance with the thermoelements exhibits interesting features, arising from the coupling of the temperature-dependent electrical and thermal transport properties at different temperature ranges and the architecture of nanostructured thermoelectric materials. This coupling results in inflections on the efficiency, i.e., maximum and minimum values of the efficiency at higher temperatures, 600–900 K. We show the explicit dependence of the performance of the μ TEG in terms of the load resistance and discuss the underlying physics. The unusual features of the efficiency of nanostructured thermoelectric materials are a result of the behavior of the power factor and the nonequilibrium properties of the system. We also analyze the effect of the geometric shape of the thermoelements on the device. We determine the performance of the μ TEG, evaluating the generation power and its efficiency. The results show that the efficiency of the device can decrease or increase depending on the value of R L , while the power decreases with an increase of the load resistance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33266940</pmid><doi>10.3390/e21030224</doi><orcidid>https://orcid.org/0000-0003-2886-0347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2019-02, Vol.21 (3), p.224
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8ddbcc8b21664c5d8abb40c6242f31e4
source PMC (PubMed Central); DOAJ Directory of Open Access Journals; Publicly Available Content (ProQuest)
subjects Coupling
Efficiency
Electric currents
Energy harvesting
Fossil fuels
Generators
Heat conductivity
Heat transfer
Load resistance
micro-generator
Nanostructure
Nanostructured materials
nanostructuring
Partial differential equations
Performance enhancement
Performance evaluation
Point defects
Power factor
Shape effects
Temperature dependence
thermoelectric
Thermoelectric generators
Thermoelectric materials
Thomson effect
Transport properties
title Design of Nano-Structured Micro-Thermoelectric Generator: Load Resistance and Inflections in the Efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Nano-Structured%20Micro-Thermoelectric%20Generator:%20Load%20Resistance%20and%20Inflections%20in%20the%20Efficiency&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Badillo-Ruiz,%20Carlos%20Alberto&rft.date=2019-02-27&rft.volume=21&rft.issue=3&rft.spage=224&rft.pages=224-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e21030224&rft_dat=%3Cproquest_doaj_%3E2466771585%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-c833ec358ed236305a3b82501e10b959121f9457d53b87d7c69a1e24f320f44b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548394513&rft_id=info:pmid/33266940&rfr_iscdi=true