Loading…

QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads

ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the g...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-08, Vol.27 (15), p.4951
Main Authors: Jawarkar, Rahul D, Sharma, Praveen, Jain, Neetesh, Gandhi, Ajaykumar, Mukerjee, Nobendu, Al-Mutairi, Aamal A, Zaki, Magdi E A, Al-Hussain, Sami A, Samad, Abdul, Masand, Vijay H, Ghosh, Arabinda, Bakal, Ravindra L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c493t-8c3a5a3846d3c41fd52093d20b9c2e269f40dc42ac58744aa3767d9e1dd714003
cites cdi_FETCH-LOGICAL-c493t-8c3a5a3846d3c41fd52093d20b9c2e269f40dc42ac58744aa3767d9e1dd714003
container_end_page
container_issue 15
container_start_page 4951
container_title Molecules (Basel, Switzerland)
container_volume 27
creator Jawarkar, Rahul D
Sharma, Praveen
Jain, Neetesh
Gandhi, Ajaykumar
Mukerjee, Nobendu
Al-Mutairi, Aamal A
Zaki, Magdi E A
Al-Hussain, Sami A
Samad, Abdul
Masand, Vijay H
Ghosh, Arabinda
Bakal, Ravindra L
description ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr < RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.
doi_str_mv 10.3390/molecules27154951
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8de4275bde0a45d1a071b35e1012c393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8de4275bde0a45d1a071b35e1012c393</doaj_id><sourcerecordid>2700724667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-8c3a5a3846d3c41fd52093d20b9c2e269f40dc42ac58744aa3767d9e1dd714003</originalsourceid><addsrcrecordid>eNplUk1vEzEQXSEQLYUfwAVZ4sKBgL82G1-Q0pSWqIkKSTmvJvYk67Brb-1dpPY_8p9wSKhaONl68-a95_Fk2WtGPwih6MfG16j7GiMvWC5Vzp5kx0xyOhBUqqcP7kfZixi3lHImWf48OxK5yoeK0uPs17flePGezPdKEMiZ1z-s2yTojCxtk7DOekfAGTKfX5wux2QCtT7AkYzbNnjQFUbSebJA7TfO3iGZeKcRajTkawWhAe3bygeryTlC14dEX-BNb6PtkKx9IF2F5KrtbGPv9oZ-TcazS3J9G3y0DsmldRCRTF1lV7bzIRJI7q6zGpJTIDMEE19mz9ZQR3x1OE-y7-efrydfBrOri-lkPBtoqUQ3GGkBOYiRHBqhJVubnFMlDKcrpTnyoVpLarTkoPNRISWAKIaFUciMKZikVJxk072u8bAt22AbCLelB1v-AXzYlBBStBrLkUHJi3xlkILMDQNasJXIkVHGtVAiaX3aa7X9qkGj0XUB6keijyvOVuXG_yyVKKgUuzDvDgLB3_QYu7KxUWNdg0Pfx5IX6d9HNFc8Ud_-Q936Prg0qh2LFlwOh0VisT1Lp9nHgOv7MIyWu8Ur_1u81PPm4SvuO_5umvgNtLbY2g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700724667</pqid></control><display><type>article</type><title>QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Jawarkar, Rahul D ; Sharma, Praveen ; Jain, Neetesh ; Gandhi, Ajaykumar ; Mukerjee, Nobendu ; Al-Mutairi, Aamal A ; Zaki, Magdi E A ; Al-Hussain, Sami A ; Samad, Abdul ; Masand, Vijay H ; Ghosh, Arabinda ; Bakal, Ravindra L</creator><creatorcontrib>Jawarkar, Rahul D ; Sharma, Praveen ; Jain, Neetesh ; Gandhi, Ajaykumar ; Mukerjee, Nobendu ; Al-Mutairi, Aamal A ; Zaki, Magdi E A ; Al-Hussain, Sami A ; Samad, Abdul ; Masand, Vijay H ; Ghosh, Arabinda ; Bakal, Ravindra L</creatorcontrib><description>ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr &lt; RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.</description><identifier>ISSN: 1420-3049</identifier><identifier>EISSN: 1420-3049</identifier><identifier>DOI: 10.3390/molecules27154951</identifier><identifier>PMID: 35956900</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>ALK tyrosine kinase inhibitors ; Anaplastic Lymphoma Kinase ; anticancer ; Antitumor activity ; Biological activity ; Chemical bonds ; Chemists ; Datasets ; Drug development ; Drug resistance ; Enzyme inhibitors ; Fluorine ; Gene amplification ; Genetic algorithms ; Kinases ; Lipophilic ; Lung cancer ; Lymphoma ; Mathematical models ; MD simulation ; MMGBSA ; Molecular docking ; Molecular Docking Simulation ; Molecular Dynamics Simulation ; Nitrogen ; Optimization ; Protein Kinase Inhibitors - chemistry ; Protein Kinase Inhibitors - pharmacology ; Protein-tyrosine kinase ; Proteins ; QSAR ; Quantitative Structure-Activity Relationship ; Signal transduction ; Simulation ; Solvents ; Statistical analysis ; Structure-activity relationships ; Tyrosine</subject><ispartof>Molecules (Basel, Switzerland), 2022-08, Vol.27 (15), p.4951</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-8c3a5a3846d3c41fd52093d20b9c2e269f40dc42ac58744aa3767d9e1dd714003</citedby><cites>FETCH-LOGICAL-c493t-8c3a5a3846d3c41fd52093d20b9c2e269f40dc42ac58744aa3767d9e1dd714003</cites><orcidid>0000-0002-2125-6596 ; 0000-0003-3563-6642 ; 0000-0002-7129-7003 ; 0000-0001-6518-6131 ; 0000-0002-6628-7927 ; 0000-0002-3891-5949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2700724667/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2700724667?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35956900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jawarkar, Rahul D</creatorcontrib><creatorcontrib>Sharma, Praveen</creatorcontrib><creatorcontrib>Jain, Neetesh</creatorcontrib><creatorcontrib>Gandhi, Ajaykumar</creatorcontrib><creatorcontrib>Mukerjee, Nobendu</creatorcontrib><creatorcontrib>Al-Mutairi, Aamal A</creatorcontrib><creatorcontrib>Zaki, Magdi E A</creatorcontrib><creatorcontrib>Al-Hussain, Sami A</creatorcontrib><creatorcontrib>Samad, Abdul</creatorcontrib><creatorcontrib>Masand, Vijay H</creatorcontrib><creatorcontrib>Ghosh, Arabinda</creatorcontrib><creatorcontrib>Bakal, Ravindra L</creatorcontrib><title>QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads</title><title>Molecules (Basel, Switzerland)</title><addtitle>Molecules</addtitle><description>ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr &lt; RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.</description><subject>ALK tyrosine kinase inhibitors</subject><subject>Anaplastic Lymphoma Kinase</subject><subject>anticancer</subject><subject>Antitumor activity</subject><subject>Biological activity</subject><subject>Chemical bonds</subject><subject>Chemists</subject><subject>Datasets</subject><subject>Drug development</subject><subject>Drug resistance</subject><subject>Enzyme inhibitors</subject><subject>Fluorine</subject><subject>Gene amplification</subject><subject>Genetic algorithms</subject><subject>Kinases</subject><subject>Lipophilic</subject><subject>Lung cancer</subject><subject>Lymphoma</subject><subject>Mathematical models</subject><subject>MD simulation</subject><subject>MMGBSA</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Nitrogen</subject><subject>Optimization</subject><subject>Protein Kinase Inhibitors - chemistry</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein-tyrosine kinase</subject><subject>Proteins</subject><subject>QSAR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Signal transduction</subject><subject>Simulation</subject><subject>Solvents</subject><subject>Statistical analysis</subject><subject>Structure-activity relationships</subject><subject>Tyrosine</subject><issn>1420-3049</issn><issn>1420-3049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplUk1vEzEQXSEQLYUfwAVZ4sKBgL82G1-Q0pSWqIkKSTmvJvYk67Brb-1dpPY_8p9wSKhaONl68-a95_Fk2WtGPwih6MfG16j7GiMvWC5Vzp5kx0xyOhBUqqcP7kfZixi3lHImWf48OxK5yoeK0uPs17flePGezPdKEMiZ1z-s2yTojCxtk7DOekfAGTKfX5wux2QCtT7AkYzbNnjQFUbSebJA7TfO3iGZeKcRajTkawWhAe3bygeryTlC14dEX-BNb6PtkKx9IF2F5KrtbGPv9oZ-TcazS3J9G3y0DsmldRCRTF1lV7bzIRJI7q6zGpJTIDMEE19mz9ZQR3x1OE-y7-efrydfBrOri-lkPBtoqUQ3GGkBOYiRHBqhJVubnFMlDKcrpTnyoVpLarTkoPNRISWAKIaFUciMKZikVJxk072u8bAt22AbCLelB1v-AXzYlBBStBrLkUHJi3xlkILMDQNasJXIkVHGtVAiaX3aa7X9qkGj0XUB6keijyvOVuXG_yyVKKgUuzDvDgLB3_QYu7KxUWNdg0Pfx5IX6d9HNFc8Ud_-Q936Prg0qh2LFlwOh0VisT1Lp9nHgOv7MIyWu8Ur_1u81PPm4SvuO_5umvgNtLbY2g</recordid><startdate>20220803</startdate><enddate>20220803</enddate><creator>Jawarkar, Rahul D</creator><creator>Sharma, Praveen</creator><creator>Jain, Neetesh</creator><creator>Gandhi, Ajaykumar</creator><creator>Mukerjee, Nobendu</creator><creator>Al-Mutairi, Aamal A</creator><creator>Zaki, Magdi E A</creator><creator>Al-Hussain, Sami A</creator><creator>Samad, Abdul</creator><creator>Masand, Vijay H</creator><creator>Ghosh, Arabinda</creator><creator>Bakal, Ravindra L</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2125-6596</orcidid><orcidid>https://orcid.org/0000-0003-3563-6642</orcidid><orcidid>https://orcid.org/0000-0002-7129-7003</orcidid><orcidid>https://orcid.org/0000-0001-6518-6131</orcidid><orcidid>https://orcid.org/0000-0002-6628-7927</orcidid><orcidid>https://orcid.org/0000-0002-3891-5949</orcidid></search><sort><creationdate>20220803</creationdate><title>QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads</title><author>Jawarkar, Rahul D ; Sharma, Praveen ; Jain, Neetesh ; Gandhi, Ajaykumar ; Mukerjee, Nobendu ; Al-Mutairi, Aamal A ; Zaki, Magdi E A ; Al-Hussain, Sami A ; Samad, Abdul ; Masand, Vijay H ; Ghosh, Arabinda ; Bakal, Ravindra L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-8c3a5a3846d3c41fd52093d20b9c2e269f40dc42ac58744aa3767d9e1dd714003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ALK tyrosine kinase inhibitors</topic><topic>Anaplastic Lymphoma Kinase</topic><topic>anticancer</topic><topic>Antitumor activity</topic><topic>Biological activity</topic><topic>Chemical bonds</topic><topic>Chemists</topic><topic>Datasets</topic><topic>Drug development</topic><topic>Drug resistance</topic><topic>Enzyme inhibitors</topic><topic>Fluorine</topic><topic>Gene amplification</topic><topic>Genetic algorithms</topic><topic>Kinases</topic><topic>Lipophilic</topic><topic>Lung cancer</topic><topic>Lymphoma</topic><topic>Mathematical models</topic><topic>MD simulation</topic><topic>MMGBSA</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Nitrogen</topic><topic>Optimization</topic><topic>Protein Kinase Inhibitors - chemistry</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein-tyrosine kinase</topic><topic>Proteins</topic><topic>QSAR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Signal transduction</topic><topic>Simulation</topic><topic>Solvents</topic><topic>Statistical analysis</topic><topic>Structure-activity relationships</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jawarkar, Rahul D</creatorcontrib><creatorcontrib>Sharma, Praveen</creatorcontrib><creatorcontrib>Jain, Neetesh</creatorcontrib><creatorcontrib>Gandhi, Ajaykumar</creatorcontrib><creatorcontrib>Mukerjee, Nobendu</creatorcontrib><creatorcontrib>Al-Mutairi, Aamal A</creatorcontrib><creatorcontrib>Zaki, Magdi E A</creatorcontrib><creatorcontrib>Al-Hussain, Sami A</creatorcontrib><creatorcontrib>Samad, Abdul</creatorcontrib><creatorcontrib>Masand, Vijay H</creatorcontrib><creatorcontrib>Ghosh, Arabinda</creatorcontrib><creatorcontrib>Bakal, Ravindra L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Molecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jawarkar, Rahul D</au><au>Sharma, Praveen</au><au>Jain, Neetesh</au><au>Gandhi, Ajaykumar</au><au>Mukerjee, Nobendu</au><au>Al-Mutairi, Aamal A</au><au>Zaki, Magdi E A</au><au>Al-Hussain, Sami A</au><au>Samad, Abdul</au><au>Masand, Vijay H</au><au>Ghosh, Arabinda</au><au>Bakal, Ravindra L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads</atitle><jtitle>Molecules (Basel, Switzerland)</jtitle><addtitle>Molecules</addtitle><date>2022-08-03</date><risdate>2022</risdate><volume>27</volume><issue>15</issue><spage>4951</spage><pages>4951-</pages><issn>1420-3049</issn><eissn>1420-3049</eissn><abstract>ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr &lt; RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35956900</pmid><doi>10.3390/molecules27154951</doi><orcidid>https://orcid.org/0000-0002-2125-6596</orcidid><orcidid>https://orcid.org/0000-0003-3563-6642</orcidid><orcidid>https://orcid.org/0000-0002-7129-7003</orcidid><orcidid>https://orcid.org/0000-0001-6518-6131</orcidid><orcidid>https://orcid.org/0000-0002-6628-7927</orcidid><orcidid>https://orcid.org/0000-0002-3891-5949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-3049
ispartof Molecules (Basel, Switzerland), 2022-08, Vol.27 (15), p.4951
issn 1420-3049
1420-3049
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8de4275bde0a45d1a071b35e1012c393
source Publicly Available Content Database; PubMed Central
subjects ALK tyrosine kinase inhibitors
Anaplastic Lymphoma Kinase
anticancer
Antitumor activity
Biological activity
Chemical bonds
Chemists
Datasets
Drug development
Drug resistance
Enzyme inhibitors
Fluorine
Gene amplification
Genetic algorithms
Kinases
Lipophilic
Lung cancer
Lymphoma
Mathematical models
MD simulation
MMGBSA
Molecular docking
Molecular Docking Simulation
Molecular Dynamics Simulation
Nitrogen
Optimization
Protein Kinase Inhibitors - chemistry
Protein Kinase Inhibitors - pharmacology
Protein-tyrosine kinase
Proteins
QSAR
Quantitative Structure-Activity Relationship
Signal transduction
Simulation
Solvents
Statistical analysis
Structure-activity relationships
Tyrosine
title QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A42%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSAR,%20Molecular%20Docking,%20MD%20Simulation%20and%20MMGBSA%20Calculations%20Approaches%20to%20Recognize%20Concealed%20Pharmacophoric%20Features%20Requisite%20for%20the%20Optimization%20of%20ALK%20Tyrosine%20Kinase%20Inhibitors%20as%20Anticancer%20Leads&rft.jtitle=Molecules%20(Basel,%20Switzerland)&rft.au=Jawarkar,%20Rahul%20D&rft.date=2022-08-03&rft.volume=27&rft.issue=15&rft.spage=4951&rft.pages=4951-&rft.issn=1420-3049&rft.eissn=1420-3049&rft_id=info:doi/10.3390/molecules27154951&rft_dat=%3Cproquest_doaj_%3E2700724667%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c493t-8c3a5a3846d3c41fd52093d20b9c2e269f40dc42ac58744aa3767d9e1dd714003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700724667&rft_id=info:pmid/35956900&rfr_iscdi=true