Loading…
Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation
This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes s...
Saved in:
Published in: | Advances in difference equations 2020-04, Vol.2020 (1), p.1-22, Article 151 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3 |
container_end_page | 22 |
container_issue | 1 |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2020 |
creator | Karim, Samsul Ariffin Abdul Saaban, Azizan Skala, Vaclav Ghaffar, Abdul Nisar, Kottakkaran Sooppy Baleanu, Dumitru |
description | This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes since it gives more flexibility for the shape design in geometric modeling. By choosing some suitable value of the parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier triangular patches, respectively. In order to apply the proposed bases to general scattered data, firstly the data is triangulated using Delaunay triangulation. Then the sufficient condition for
C
1
continuity using cubic precision method on each adjacent triangle is implemented. Finally, the interpolation scheme is constructed based on a convex combination between three local schemes of the cubic Bézier-like triangular patches. The detail comparison in terms of maximum error and coefficient of determination
r
2
with some existing meshfree methods i.e. radial basis function (RBF) such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From graphical results, the proposed scheme gives more visually pleasing interpolating surfaces compared with all RBF methods. Based on error analysis, for all four functions, the proposed scheme is better than RBFs except for data from the third function. Overall, the proposed scheme gives
r
2
value between 0.99920443 and 0.99999994. This is very good for surface fitting for a large scattered data set. |
doi_str_mv | 10.1186/s13662-020-02598-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8de5a718459a4aa29c08c958b94b8186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8de5a718459a4aa29c08c958b94b8186</doaj_id><sourcerecordid>2387303032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3</originalsourceid><addsrcrecordid>eNp9Ud2O1iAQJcZNXNd9gb0i8bouUFrgUr_4s8mXeKPXZErh-6i1VKBp9I32OfbFlm2NemXIhJnhnDNkDkI3lLyhVLa3idZtyyrCSIlGyWp9hi5pK0VFJRfP_8lfoJcpDYQwxaW8RMMhTCnHxWQfJhwcnuyKzdJ5g9893P_yNlaj_2Zxjh6m0zJCxDNkc7YJrz6fMczz6A1sbD_hVNJso-1xDxlKpxRzGLf3V-jCwZjs9e_7Cn398P7L4VN1_Pzx7vD2WBnOVK46Tltq-taKlqgeiGkYd7LvnDBOMMeBtOA6cKSxohPcudo6K4SSnBjV1K6-Qne7bh9g0HP03yH-1AG83hohnjTE7M1otextA6KspVHAAZgyRBYR2SneybLXovV615pj-LHYlPUQljiV72tWS1GTclhBsR1lYkgpWvdnKiX6yR-9-6OLP3rzR6-FVO-kVMDTyca_0v9hPQK5FZaU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387303032</pqid></control><display><type>article</type><title>Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Karim, Samsul Ariffin Abdul ; Saaban, Azizan ; Skala, Vaclav ; Ghaffar, Abdul ; Nisar, Kottakkaran Sooppy ; Baleanu, Dumitru</creator><creatorcontrib>Karim, Samsul Ariffin Abdul ; Saaban, Azizan ; Skala, Vaclav ; Ghaffar, Abdul ; Nisar, Kottakkaran Sooppy ; Baleanu, Dumitru</creatorcontrib><description>This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes since it gives more flexibility for the shape design in geometric modeling. By choosing some suitable value of the parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier triangular patches, respectively. In order to apply the proposed bases to general scattered data, firstly the data is triangulated using Delaunay triangulation. Then the sufficient condition for
C
1
continuity using cubic precision method on each adjacent triangle is implemented. Finally, the interpolation scheme is constructed based on a convex combination between three local schemes of the cubic Bézier-like triangular patches. The detail comparison in terms of maximum error and coefficient of determination
r
2
with some existing meshfree methods i.e. radial basis function (RBF) such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From graphical results, the proposed scheme gives more visually pleasing interpolating surfaces compared with all RBF methods. Based on error analysis, for all four functions, the proposed scheme is better than RBFs except for data from the third function. Overall, the proposed scheme gives
r
2
value between 0.99920443 and 0.99999994. This is very good for surface fitting for a large scattered data set.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-020-02598-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Bézier triangular ; Continuity ; Cubic Bézier-like ; Delaunay triangulation ; Difference and Functional Equations ; Error analysis ; Functional Analysis ; Interpolation ; Mathematics ; Mathematics and Statistics ; Meshless methods ; Ordinary Differential Equations ; Parameters ; Partial Differential Equations ; Patches ; Patches (structures) ; Radial basis function ; Scattered data interpolation ; Thin plates ; Triangles ; Visualization</subject><ispartof>Advances in difference equations, 2020-04, Vol.2020 (1), p.1-22, Article 151</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3</citedby><cites>FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2387303032/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2387303032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Karim, Samsul Ariffin Abdul</creatorcontrib><creatorcontrib>Saaban, Azizan</creatorcontrib><creatorcontrib>Skala, Vaclav</creatorcontrib><creatorcontrib>Ghaffar, Abdul</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><title>Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes since it gives more flexibility for the shape design in geometric modeling. By choosing some suitable value of the parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier triangular patches, respectively. In order to apply the proposed bases to general scattered data, firstly the data is triangulated using Delaunay triangulation. Then the sufficient condition for
C
1
continuity using cubic precision method on each adjacent triangle is implemented. Finally, the interpolation scheme is constructed based on a convex combination between three local schemes of the cubic Bézier-like triangular patches. The detail comparison in terms of maximum error and coefficient of determination
r
2
with some existing meshfree methods i.e. radial basis function (RBF) such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From graphical results, the proposed scheme gives more visually pleasing interpolating surfaces compared with all RBF methods. Based on error analysis, for all four functions, the proposed scheme is better than RBFs except for data from the third function. Overall, the proposed scheme gives
r
2
value between 0.99920443 and 0.99999994. This is very good for surface fitting for a large scattered data set.</description><subject>Analysis</subject><subject>Bézier triangular</subject><subject>Continuity</subject><subject>Cubic Bézier-like</subject><subject>Delaunay triangulation</subject><subject>Difference and Functional Equations</subject><subject>Error analysis</subject><subject>Functional Analysis</subject><subject>Interpolation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meshless methods</subject><subject>Ordinary Differential Equations</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Patches</subject><subject>Patches (structures)</subject><subject>Radial basis function</subject><subject>Scattered data interpolation</subject><subject>Thin plates</subject><subject>Triangles</subject><subject>Visualization</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ud2O1iAQJcZNXNd9gb0i8bouUFrgUr_4s8mXeKPXZErh-6i1VKBp9I32OfbFlm2NemXIhJnhnDNkDkI3lLyhVLa3idZtyyrCSIlGyWp9hi5pK0VFJRfP_8lfoJcpDYQwxaW8RMMhTCnHxWQfJhwcnuyKzdJ5g9893P_yNlaj_2Zxjh6m0zJCxDNkc7YJrz6fMczz6A1sbD_hVNJso-1xDxlKpxRzGLf3V-jCwZjs9e_7Cn398P7L4VN1_Pzx7vD2WBnOVK46Tltq-taKlqgeiGkYd7LvnDBOMMeBtOA6cKSxohPcudo6K4SSnBjV1K6-Qne7bh9g0HP03yH-1AG83hohnjTE7M1otextA6KspVHAAZgyRBYR2SneybLXovV615pj-LHYlPUQljiV72tWS1GTclhBsR1lYkgpWvdnKiX6yR-9-6OLP3rzR6-FVO-kVMDTyca_0v9hPQK5FZaU</recordid><startdate>20200408</startdate><enddate>20200408</enddate><creator>Karim, Samsul Ariffin Abdul</creator><creator>Saaban, Azizan</creator><creator>Skala, Vaclav</creator><creator>Ghaffar, Abdul</creator><creator>Nisar, Kottakkaran Sooppy</creator><creator>Baleanu, Dumitru</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200408</creationdate><title>Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation</title><author>Karim, Samsul Ariffin Abdul ; Saaban, Azizan ; Skala, Vaclav ; Ghaffar, Abdul ; Nisar, Kottakkaran Sooppy ; Baleanu, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Bézier triangular</topic><topic>Continuity</topic><topic>Cubic Bézier-like</topic><topic>Delaunay triangulation</topic><topic>Difference and Functional Equations</topic><topic>Error analysis</topic><topic>Functional Analysis</topic><topic>Interpolation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meshless methods</topic><topic>Ordinary Differential Equations</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Patches</topic><topic>Patches (structures)</topic><topic>Radial basis function</topic><topic>Scattered data interpolation</topic><topic>Thin plates</topic><topic>Triangles</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karim, Samsul Ariffin Abdul</creatorcontrib><creatorcontrib>Saaban, Azizan</creatorcontrib><creatorcontrib>Skala, Vaclav</creatorcontrib><creatorcontrib>Ghaffar, Abdul</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karim, Samsul Ariffin Abdul</au><au>Saaban, Azizan</au><au>Skala, Vaclav</au><au>Ghaffar, Abdul</au><au>Nisar, Kottakkaran Sooppy</au><au>Baleanu, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2020-04-08</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><artnum>151</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes since it gives more flexibility for the shape design in geometric modeling. By choosing some suitable value of the parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier triangular patches, respectively. In order to apply the proposed bases to general scattered data, firstly the data is triangulated using Delaunay triangulation. Then the sufficient condition for
C
1
continuity using cubic precision method on each adjacent triangle is implemented. Finally, the interpolation scheme is constructed based on a convex combination between three local schemes of the cubic Bézier-like triangular patches. The detail comparison in terms of maximum error and coefficient of determination
r
2
with some existing meshfree methods i.e. radial basis function (RBF) such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From graphical results, the proposed scheme gives more visually pleasing interpolating surfaces compared with all RBF methods. Based on error analysis, for all four functions, the proposed scheme is better than RBFs except for data from the third function. Overall, the proposed scheme gives
r
2
value between 0.99920443 and 0.99999994. This is very good for surface fitting for a large scattered data set.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-020-02598-w</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1847 |
ispartof | Advances in difference equations, 2020-04, Vol.2020 (1), p.1-22, Article 151 |
issn | 1687-1847 1687-1839 1687-1847 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8de5a718459a4aa29c08c958b94b8186 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals |
subjects | Analysis Bézier triangular Continuity Cubic Bézier-like Delaunay triangulation Difference and Functional Equations Error analysis Functional Analysis Interpolation Mathematics Mathematics and Statistics Meshless methods Ordinary Differential Equations Parameters Partial Differential Equations Patches Patches (structures) Radial basis function Scattered data interpolation Thin plates Triangles Visualization |
title | Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20new%20cubic%20B%C3%A9zier-like%20triangular%20patches%20with%20application%20in%20scattered%20data%20interpolation&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Karim,%20Samsul%20Ariffin%20Abdul&rft.date=2020-04-08&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.artnum=151&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-020-02598-w&rft_dat=%3Cproquest_doaj_%3E2387303032%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387303032&rft_id=info:pmid/&rfr_iscdi=true |