Loading…

Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation

This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes s...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations 2020-04, Vol.2020 (1), p.1-22, Article 151
Main Authors: Karim, Samsul Ariffin Abdul, Saaban, Azizan, Skala, Vaclav, Ghaffar, Abdul, Nisar, Kottakkaran Sooppy, Baleanu, Dumitru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3
cites cdi_FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3
container_end_page 22
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2020
creator Karim, Samsul Ariffin Abdul
Saaban, Azizan
Skala, Vaclav
Ghaffar, Abdul
Nisar, Kottakkaran Sooppy
Baleanu, Dumitru
description This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes since it gives more flexibility for the shape design in geometric modeling. By choosing some suitable value of the parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier triangular patches, respectively. In order to apply the proposed bases to general scattered data, firstly the data is triangulated using Delaunay triangulation. Then the sufficient condition for C 1 continuity using cubic precision method on each adjacent triangle is implemented. Finally, the interpolation scheme is constructed based on a convex combination between three local schemes of the cubic Bézier-like triangular patches. The detail comparison in terms of maximum error and coefficient of determination r 2 with some existing meshfree methods i.e. radial basis function (RBF) such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From graphical results, the proposed scheme gives more visually pleasing interpolating surfaces compared with all RBF methods. Based on error analysis, for all four functions, the proposed scheme is better than RBFs except for data from the third function. Overall, the proposed scheme gives r 2 value between 0.99920443 and 0.99999994. This is very good for surface fitting for a large scattered data set.
doi_str_mv 10.1186/s13662-020-02598-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8de5a718459a4aa29c08c958b94b8186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8de5a718459a4aa29c08c958b94b8186</doaj_id><sourcerecordid>2387303032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3</originalsourceid><addsrcrecordid>eNp9Ud2O1iAQJcZNXNd9gb0i8bouUFrgUr_4s8mXeKPXZErh-6i1VKBp9I32OfbFlm2NemXIhJnhnDNkDkI3lLyhVLa3idZtyyrCSIlGyWp9hi5pK0VFJRfP_8lfoJcpDYQwxaW8RMMhTCnHxWQfJhwcnuyKzdJ5g9893P_yNlaj_2Zxjh6m0zJCxDNkc7YJrz6fMczz6A1sbD_hVNJso-1xDxlKpxRzGLf3V-jCwZjs9e_7Cn398P7L4VN1_Pzx7vD2WBnOVK46Tltq-taKlqgeiGkYd7LvnDBOMMeBtOA6cKSxohPcudo6K4SSnBjV1K6-Qne7bh9g0HP03yH-1AG83hohnjTE7M1otextA6KspVHAAZgyRBYR2SneybLXovV615pj-LHYlPUQljiV72tWS1GTclhBsR1lYkgpWvdnKiX6yR-9-6OLP3rzR6-FVO-kVMDTyca_0v9hPQK5FZaU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387303032</pqid></control><display><type>article</type><title>Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Karim, Samsul Ariffin Abdul ; Saaban, Azizan ; Skala, Vaclav ; Ghaffar, Abdul ; Nisar, Kottakkaran Sooppy ; Baleanu, Dumitru</creator><creatorcontrib>Karim, Samsul Ariffin Abdul ; Saaban, Azizan ; Skala, Vaclav ; Ghaffar, Abdul ; Nisar, Kottakkaran Sooppy ; Baleanu, Dumitru</creatorcontrib><description>This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes since it gives more flexibility for the shape design in geometric modeling. By choosing some suitable value of the parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier triangular patches, respectively. In order to apply the proposed bases to general scattered data, firstly the data is triangulated using Delaunay triangulation. Then the sufficient condition for C 1 continuity using cubic precision method on each adjacent triangle is implemented. Finally, the interpolation scheme is constructed based on a convex combination between three local schemes of the cubic Bézier-like triangular patches. The detail comparison in terms of maximum error and coefficient of determination r 2 with some existing meshfree methods i.e. radial basis function (RBF) such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From graphical results, the proposed scheme gives more visually pleasing interpolating surfaces compared with all RBF methods. Based on error analysis, for all four functions, the proposed scheme is better than RBFs except for data from the third function. Overall, the proposed scheme gives r 2 value between 0.99920443 and 0.99999994. This is very good for surface fitting for a large scattered data set.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-020-02598-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Bézier triangular ; Continuity ; Cubic Bézier-like ; Delaunay triangulation ; Difference and Functional Equations ; Error analysis ; Functional Analysis ; Interpolation ; Mathematics ; Mathematics and Statistics ; Meshless methods ; Ordinary Differential Equations ; Parameters ; Partial Differential Equations ; Patches ; Patches (structures) ; Radial basis function ; Scattered data interpolation ; Thin plates ; Triangles ; Visualization</subject><ispartof>Advances in difference equations, 2020-04, Vol.2020 (1), p.1-22, Article 151</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3</citedby><cites>FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2387303032/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2387303032?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Karim, Samsul Ariffin Abdul</creatorcontrib><creatorcontrib>Saaban, Azizan</creatorcontrib><creatorcontrib>Skala, Vaclav</creatorcontrib><creatorcontrib>Ghaffar, Abdul</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><title>Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes since it gives more flexibility for the shape design in geometric modeling. By choosing some suitable value of the parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier triangular patches, respectively. In order to apply the proposed bases to general scattered data, firstly the data is triangulated using Delaunay triangulation. Then the sufficient condition for C 1 continuity using cubic precision method on each adjacent triangle is implemented. Finally, the interpolation scheme is constructed based on a convex combination between three local schemes of the cubic Bézier-like triangular patches. The detail comparison in terms of maximum error and coefficient of determination r 2 with some existing meshfree methods i.e. radial basis function (RBF) such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From graphical results, the proposed scheme gives more visually pleasing interpolating surfaces compared with all RBF methods. Based on error analysis, for all four functions, the proposed scheme is better than RBFs except for data from the third function. Overall, the proposed scheme gives r 2 value between 0.99920443 and 0.99999994. This is very good for surface fitting for a large scattered data set.</description><subject>Analysis</subject><subject>Bézier triangular</subject><subject>Continuity</subject><subject>Cubic Bézier-like</subject><subject>Delaunay triangulation</subject><subject>Difference and Functional Equations</subject><subject>Error analysis</subject><subject>Functional Analysis</subject><subject>Interpolation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Meshless methods</subject><subject>Ordinary Differential Equations</subject><subject>Parameters</subject><subject>Partial Differential Equations</subject><subject>Patches</subject><subject>Patches (structures)</subject><subject>Radial basis function</subject><subject>Scattered data interpolation</subject><subject>Thin plates</subject><subject>Triangles</subject><subject>Visualization</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ud2O1iAQJcZNXNd9gb0i8bouUFrgUr_4s8mXeKPXZErh-6i1VKBp9I32OfbFlm2NemXIhJnhnDNkDkI3lLyhVLa3idZtyyrCSIlGyWp9hi5pK0VFJRfP_8lfoJcpDYQwxaW8RMMhTCnHxWQfJhwcnuyKzdJ5g9893P_yNlaj_2Zxjh6m0zJCxDNkc7YJrz6fMczz6A1sbD_hVNJso-1xDxlKpxRzGLf3V-jCwZjs9e_7Cn398P7L4VN1_Pzx7vD2WBnOVK46Tltq-taKlqgeiGkYd7LvnDBOMMeBtOA6cKSxohPcudo6K4SSnBjV1K6-Qne7bh9g0HP03yH-1AG83hohnjTE7M1otextA6KspVHAAZgyRBYR2SneybLXovV615pj-LHYlPUQljiV72tWS1GTclhBsR1lYkgpWvdnKiX6yR-9-6OLP3rzR6-FVO-kVMDTyca_0v9hPQK5FZaU</recordid><startdate>20200408</startdate><enddate>20200408</enddate><creator>Karim, Samsul Ariffin Abdul</creator><creator>Saaban, Azizan</creator><creator>Skala, Vaclav</creator><creator>Ghaffar, Abdul</creator><creator>Nisar, Kottakkaran Sooppy</creator><creator>Baleanu, Dumitru</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200408</creationdate><title>Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation</title><author>Karim, Samsul Ariffin Abdul ; Saaban, Azizan ; Skala, Vaclav ; Ghaffar, Abdul ; Nisar, Kottakkaran Sooppy ; Baleanu, Dumitru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Bézier triangular</topic><topic>Continuity</topic><topic>Cubic Bézier-like</topic><topic>Delaunay triangulation</topic><topic>Difference and Functional Equations</topic><topic>Error analysis</topic><topic>Functional Analysis</topic><topic>Interpolation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Meshless methods</topic><topic>Ordinary Differential Equations</topic><topic>Parameters</topic><topic>Partial Differential Equations</topic><topic>Patches</topic><topic>Patches (structures)</topic><topic>Radial basis function</topic><topic>Scattered data interpolation</topic><topic>Thin plates</topic><topic>Triangles</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karim, Samsul Ariffin Abdul</creatorcontrib><creatorcontrib>Saaban, Azizan</creatorcontrib><creatorcontrib>Skala, Vaclav</creatorcontrib><creatorcontrib>Ghaffar, Abdul</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Baleanu, Dumitru</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karim, Samsul Ariffin Abdul</au><au>Saaban, Azizan</au><au>Skala, Vaclav</au><au>Ghaffar, Abdul</au><au>Nisar, Kottakkaran Sooppy</au><au>Baleanu, Dumitru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2020-04-08</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><artnum>151</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>This paper discusses the functional scattered data interpolation to interpolate the general scattered data. Compared with the previous works, we construct a new cubic Bézier-like triangular basis function controlled by three shape parameters. This is an advantage compared with the existing schemes since it gives more flexibility for the shape design in geometric modeling. By choosing some suitable value of the parameters, this new triangular basis is reduced to the cubic Ball and cubic Bézier triangular patches, respectively. In order to apply the proposed bases to general scattered data, firstly the data is triangulated using Delaunay triangulation. Then the sufficient condition for C 1 continuity using cubic precision method on each adjacent triangle is implemented. Finally, the interpolation scheme is constructed based on a convex combination between three local schemes of the cubic Bézier-like triangular patches. The detail comparison in terms of maximum error and coefficient of determination r 2 with some existing meshfree methods i.e. radial basis function (RBF) such as linear, thin plate spline (TPS), Gaussian, and multiquadric are presented. From graphical results, the proposed scheme gives more visually pleasing interpolating surfaces compared with all RBF methods. Based on error analysis, for all four functions, the proposed scheme is better than RBFs except for data from the third function. Overall, the proposed scheme gives r 2 value between 0.99920443 and 0.99999994. This is very good for surface fitting for a large scattered data set.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-020-02598-w</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2020-04, Vol.2020 (1), p.1-22, Article 151
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8de5a718459a4aa29c08c958b94b8186
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals
subjects Analysis
Bézier triangular
Continuity
Cubic Bézier-like
Delaunay triangulation
Difference and Functional Equations
Error analysis
Functional Analysis
Interpolation
Mathematics
Mathematics and Statistics
Meshless methods
Ordinary Differential Equations
Parameters
Partial Differential Equations
Patches
Patches (structures)
Radial basis function
Scattered data interpolation
Thin plates
Triangles
Visualization
title Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20new%20cubic%20B%C3%A9zier-like%20triangular%20patches%20with%20application%20in%20scattered%20data%20interpolation&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Karim,%20Samsul%20Ariffin%20Abdul&rft.date=2020-04-08&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.artnum=151&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-020-02598-w&rft_dat=%3Cproquest_doaj_%3E2387303032%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-b4161cd6e7609da0c524f8dbf7cf72f4a06afbaf05e7b74ff3efe779840c953f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387303032&rft_id=info:pmid/&rfr_iscdi=true