Loading…

Assessment of violet-blue color formation in Phalaenopsis orchids

Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions...

Full description

Saved in:
Bibliographic Details
Published in:BMC plant biology 2020-05, Vol.20 (1), p.212-212, Article 212
Main Authors: Liang, Che-Yu, Rengasamy, Krishna Preethi, Huang, Li-Min, Hsu, Chia-Chi, Jeng, Mei-Fen, Chen, Wen-Huei, Chen, Hong-Hwa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203
cites cdi_FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203
container_end_page 212
container_issue 1
container_start_page 212
container_title BMC plant biology
container_volume 20
creator Liang, Che-Yu
Rengasamy, Krishna Preethi
Huang, Li-Min
Hsu, Chia-Chi
Jeng, Mei-Fen
Chen, Wen-Huei
Chen, Hong-Hwa
description Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis. Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al , Ca and Fe ) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis. Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al , Ca and Fe to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.
doi_str_mv 10.1186/s12870-020-02402-7
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ded1b1b8ea840f4a81d1d4ab982fbdf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627448162</galeid><doaj_id>oai_doaj_org_article_8ded1b1b8ea840f4a81d1d4ab982fbdf</doaj_id><sourcerecordid>A627448162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203</originalsourceid><addsrcrecordid>eNptkl1vFCEYhSdGY2v1D3hhJvFGL6byAjvAjcmmsbpJE40f14TPXTYzwwozjf77Mt1aO8YQAoHnPcDhVNVLQOcAvH2XAXOGGoTnThFu2KPqFCiDBmMsHj-Yn1TPct4jBIxT8bQ6IZgIJlb0tFqvc3Y5924Y6-jr6xA7Nza6m1xtYhdT7WPq1RjiUIeh_rJTnXJDPOSQ65jMLtj8vHriVZfdi7vxrPpx-eH7xafm6vPHzcX6qjEtbceGEWa1NqBb4b0mVGgCHpUrrcCBw9hgyrSg1CosyuWM9154TjhRdsUBI3JWbY66Nqq9PKTQq_RbRhXk7UJMW6nSGEznJLfOggbNneIUeao4WLBUacGx19YXrfdHrcOke2dNeX1S3UJ0uTOEndzGa8lwMR6zIvDmTiDFn5PLo-xDNq7r1ODilOX8HZQCAVLQ1_-g-ziloVg1U5RSQQX-S21VeUAYfCznmllUrsuBlHJoZ-r8P1Rp1vXBxMH5UNYXBW8XBYUZ3a9xq6ac5ebb1yWLj6xJMefk_L0fgOQcOHkMnCyBk7eBk7MRrx46eV_yJ2HkBpkZzts</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404449492</pqid></control><display><type>article</type><title>Assessment of violet-blue color formation in Phalaenopsis orchids</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Liang, Che-Yu ; Rengasamy, Krishna Preethi ; Huang, Li-Min ; Hsu, Chia-Chi ; Jeng, Mei-Fen ; Chen, Wen-Huei ; Chen, Hong-Hwa</creator><creatorcontrib>Liang, Che-Yu ; Rengasamy, Krishna Preethi ; Huang, Li-Min ; Hsu, Chia-Chi ; Jeng, Mei-Fen ; Chen, Wen-Huei ; Chen, Hong-Hwa</creatorcontrib><description>Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis. Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al , Ca and Fe ) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis. Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al , Ca and Fe to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-020-02402-7</identifier><identifier>PMID: 32397954</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accumulation ; Aluminum ; Analysis ; Anthocyanins ; Anthocyanins - metabolism ; Aromatic compounds ; Biosynthesis ; Calcium ; Calcium ions ; Cash crops ; Color ; Cultivars ; Cytochrome ; Delphinidin ; DgF3’5’H ; Enzymes ; Ferric ions ; Flavonoids ; Flowers ; Flowers &amp; plants ; Flowers - genetics ; Flowers - growth &amp; development ; Flowers - physiology ; Gene expression ; Horticulture ; Iron ; Metal ions ; Molecular docking ; Molecular Docking Simulation ; Orchidaceae - genetics ; Orchidaceae - growth &amp; development ; Orchidaceae - physiology ; Orchids ; PeF3’H ; pH effects ; Phalaenopsis ; Pigmentation ; Sequence analysis ; Substrates</subject><ispartof>BMC plant biology, 2020-05, Vol.20 (1), p.212-212, Article 212</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203</citedby><cites>FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203</cites><orcidid>0000-0002-7323-7434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2404449492?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32397954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Che-Yu</creatorcontrib><creatorcontrib>Rengasamy, Krishna Preethi</creatorcontrib><creatorcontrib>Huang, Li-Min</creatorcontrib><creatorcontrib>Hsu, Chia-Chi</creatorcontrib><creatorcontrib>Jeng, Mei-Fen</creatorcontrib><creatorcontrib>Chen, Wen-Huei</creatorcontrib><creatorcontrib>Chen, Hong-Hwa</creatorcontrib><title>Assessment of violet-blue color formation in Phalaenopsis orchids</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis. Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al , Ca and Fe ) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis. Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al , Ca and Fe to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.</description><subject>Accumulation</subject><subject>Aluminum</subject><subject>Analysis</subject><subject>Anthocyanins</subject><subject>Anthocyanins - metabolism</subject><subject>Aromatic compounds</subject><subject>Biosynthesis</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cash crops</subject><subject>Color</subject><subject>Cultivars</subject><subject>Cytochrome</subject><subject>Delphinidin</subject><subject>DgF3’5’H</subject><subject>Enzymes</subject><subject>Ferric ions</subject><subject>Flavonoids</subject><subject>Flowers</subject><subject>Flowers &amp; plants</subject><subject>Flowers - genetics</subject><subject>Flowers - growth &amp; development</subject><subject>Flowers - physiology</subject><subject>Gene expression</subject><subject>Horticulture</subject><subject>Iron</subject><subject>Metal ions</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Orchidaceae - genetics</subject><subject>Orchidaceae - growth &amp; development</subject><subject>Orchidaceae - physiology</subject><subject>Orchids</subject><subject>PeF3’H</subject><subject>pH effects</subject><subject>Phalaenopsis</subject><subject>Pigmentation</subject><subject>Sequence analysis</subject><subject>Substrates</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1vFCEYhSdGY2v1D3hhJvFGL6byAjvAjcmmsbpJE40f14TPXTYzwwozjf77Mt1aO8YQAoHnPcDhVNVLQOcAvH2XAXOGGoTnThFu2KPqFCiDBmMsHj-Yn1TPct4jBIxT8bQ6IZgIJlb0tFqvc3Y5924Y6-jr6xA7Nza6m1xtYhdT7WPq1RjiUIeh_rJTnXJDPOSQ65jMLtj8vHriVZfdi7vxrPpx-eH7xafm6vPHzcX6qjEtbceGEWa1NqBb4b0mVGgCHpUrrcCBw9hgyrSg1CosyuWM9154TjhRdsUBI3JWbY66Nqq9PKTQq_RbRhXk7UJMW6nSGEznJLfOggbNneIUeao4WLBUacGx19YXrfdHrcOke2dNeX1S3UJ0uTOEndzGa8lwMR6zIvDmTiDFn5PLo-xDNq7r1ODilOX8HZQCAVLQ1_-g-ziloVg1U5RSQQX-S21VeUAYfCznmllUrsuBlHJoZ-r8P1Rp1vXBxMH5UNYXBW8XBYUZ3a9xq6ac5ebb1yWLj6xJMefk_L0fgOQcOHkMnCyBk7eBk7MRrx46eV_yJ2HkBpkZzts</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Liang, Che-Yu</creator><creator>Rengasamy, Krishna Preethi</creator><creator>Huang, Li-Min</creator><creator>Hsu, Chia-Chi</creator><creator>Jeng, Mei-Fen</creator><creator>Chen, Wen-Huei</creator><creator>Chen, Hong-Hwa</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7323-7434</orcidid></search><sort><creationdate>20200512</creationdate><title>Assessment of violet-blue color formation in Phalaenopsis orchids</title><author>Liang, Che-Yu ; Rengasamy, Krishna Preethi ; Huang, Li-Min ; Hsu, Chia-Chi ; Jeng, Mei-Fen ; Chen, Wen-Huei ; Chen, Hong-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Aluminum</topic><topic>Analysis</topic><topic>Anthocyanins</topic><topic>Anthocyanins - metabolism</topic><topic>Aromatic compounds</topic><topic>Biosynthesis</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cash crops</topic><topic>Color</topic><topic>Cultivars</topic><topic>Cytochrome</topic><topic>Delphinidin</topic><topic>DgF3’5’H</topic><topic>Enzymes</topic><topic>Ferric ions</topic><topic>Flavonoids</topic><topic>Flowers</topic><topic>Flowers &amp; plants</topic><topic>Flowers - genetics</topic><topic>Flowers - growth &amp; development</topic><topic>Flowers - physiology</topic><topic>Gene expression</topic><topic>Horticulture</topic><topic>Iron</topic><topic>Metal ions</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Orchidaceae - genetics</topic><topic>Orchidaceae - growth &amp; development</topic><topic>Orchidaceae - physiology</topic><topic>Orchids</topic><topic>PeF3’H</topic><topic>pH effects</topic><topic>Phalaenopsis</topic><topic>Pigmentation</topic><topic>Sequence analysis</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Che-Yu</creatorcontrib><creatorcontrib>Rengasamy, Krishna Preethi</creatorcontrib><creatorcontrib>Huang, Li-Min</creatorcontrib><creatorcontrib>Hsu, Chia-Chi</creatorcontrib><creatorcontrib>Jeng, Mei-Fen</creatorcontrib><creatorcontrib>Chen, Wen-Huei</creatorcontrib><creatorcontrib>Chen, Hong-Hwa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Che-Yu</au><au>Rengasamy, Krishna Preethi</au><au>Huang, Li-Min</au><au>Hsu, Chia-Chi</au><au>Jeng, Mei-Fen</au><au>Chen, Wen-Huei</au><au>Chen, Hong-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of violet-blue color formation in Phalaenopsis orchids</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>212</spage><epage>212</epage><pages>212-212</pages><artnum>212</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis. Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al , Ca and Fe ) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis. Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al , Ca and Fe to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32397954</pmid><doi>10.1186/s12870-020-02402-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7323-7434</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2229
ispartof BMC plant biology, 2020-05, Vol.20 (1), p.212-212, Article 212
issn 1471-2229
1471-2229
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8ded1b1b8ea840f4a81d1d4ab982fbdf
source NCBI_PubMed Central(免费); Publicly Available Content Database
subjects Accumulation
Aluminum
Analysis
Anthocyanins
Anthocyanins - metabolism
Aromatic compounds
Biosynthesis
Calcium
Calcium ions
Cash crops
Color
Cultivars
Cytochrome
Delphinidin
DgF3’5’H
Enzymes
Ferric ions
Flavonoids
Flowers
Flowers & plants
Flowers - genetics
Flowers - growth & development
Flowers - physiology
Gene expression
Horticulture
Iron
Metal ions
Molecular docking
Molecular Docking Simulation
Orchidaceae - genetics
Orchidaceae - growth & development
Orchidaceae - physiology
Orchids
PeF3’H
pH effects
Phalaenopsis
Pigmentation
Sequence analysis
Substrates
title Assessment of violet-blue color formation in Phalaenopsis orchids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20violet-blue%20color%20formation%20in%20Phalaenopsis%20orchids&rft.jtitle=BMC%20plant%20biology&rft.au=Liang,%20Che-Yu&rft.date=2020-05-12&rft.volume=20&rft.issue=1&rft.spage=212&rft.epage=212&rft.pages=212-212&rft.artnum=212&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-020-02402-7&rft_dat=%3Cgale_doaj_%3EA627448162%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404449492&rft_id=info:pmid/32397954&rft_galeid=A627448162&rfr_iscdi=true