Loading…
Assessment of violet-blue color formation in Phalaenopsis orchids
Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions...
Saved in:
Published in: | BMC plant biology 2020-05, Vol.20 (1), p.212-212, Article 212 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203 |
---|---|
cites | cdi_FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203 |
container_end_page | 212 |
container_issue | 1 |
container_start_page | 212 |
container_title | BMC plant biology |
container_volume | 20 |
creator | Liang, Che-Yu Rengasamy, Krishna Preethi Huang, Li-Min Hsu, Chia-Chi Jeng, Mei-Fen Chen, Wen-Huei Chen, Hong-Hwa |
description | Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis.
Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al
, Ca
and Fe
) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis.
Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al
, Ca
and Fe
to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis. |
doi_str_mv | 10.1186/s12870-020-02402-7 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ded1b1b8ea840f4a81d1d4ab982fbdf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627448162</galeid><doaj_id>oai_doaj_org_article_8ded1b1b8ea840f4a81d1d4ab982fbdf</doaj_id><sourcerecordid>A627448162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203</originalsourceid><addsrcrecordid>eNptkl1vFCEYhSdGY2v1D3hhJvFGL6byAjvAjcmmsbpJE40f14TPXTYzwwozjf77Mt1aO8YQAoHnPcDhVNVLQOcAvH2XAXOGGoTnThFu2KPqFCiDBmMsHj-Yn1TPct4jBIxT8bQ6IZgIJlb0tFqvc3Y5924Y6-jr6xA7Nza6m1xtYhdT7WPq1RjiUIeh_rJTnXJDPOSQ65jMLtj8vHriVZfdi7vxrPpx-eH7xafm6vPHzcX6qjEtbceGEWa1NqBb4b0mVGgCHpUrrcCBw9hgyrSg1CosyuWM9154TjhRdsUBI3JWbY66Nqq9PKTQq_RbRhXk7UJMW6nSGEznJLfOggbNneIUeao4WLBUacGx19YXrfdHrcOke2dNeX1S3UJ0uTOEndzGa8lwMR6zIvDmTiDFn5PLo-xDNq7r1ODilOX8HZQCAVLQ1_-g-ziloVg1U5RSQQX-S21VeUAYfCznmllUrsuBlHJoZ-r8P1Rp1vXBxMH5UNYXBW8XBYUZ3a9xq6ac5ebb1yWLj6xJMefk_L0fgOQcOHkMnCyBk7eBk7MRrx46eV_yJ2HkBpkZzts</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2404449492</pqid></control><display><type>article</type><title>Assessment of violet-blue color formation in Phalaenopsis orchids</title><source>NCBI_PubMed Central(免费)</source><source>Publicly Available Content Database</source><creator>Liang, Che-Yu ; Rengasamy, Krishna Preethi ; Huang, Li-Min ; Hsu, Chia-Chi ; Jeng, Mei-Fen ; Chen, Wen-Huei ; Chen, Hong-Hwa</creator><creatorcontrib>Liang, Che-Yu ; Rengasamy, Krishna Preethi ; Huang, Li-Min ; Hsu, Chia-Chi ; Jeng, Mei-Fen ; Chen, Wen-Huei ; Chen, Hong-Hwa</creatorcontrib><description>Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis.
Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al
, Ca
and Fe
) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis.
Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al
, Ca
and Fe
to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.</description><identifier>ISSN: 1471-2229</identifier><identifier>EISSN: 1471-2229</identifier><identifier>DOI: 10.1186/s12870-020-02402-7</identifier><identifier>PMID: 32397954</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accumulation ; Aluminum ; Analysis ; Anthocyanins ; Anthocyanins - metabolism ; Aromatic compounds ; Biosynthesis ; Calcium ; Calcium ions ; Cash crops ; Color ; Cultivars ; Cytochrome ; Delphinidin ; DgF3’5’H ; Enzymes ; Ferric ions ; Flavonoids ; Flowers ; Flowers & plants ; Flowers - genetics ; Flowers - growth & development ; Flowers - physiology ; Gene expression ; Horticulture ; Iron ; Metal ions ; Molecular docking ; Molecular Docking Simulation ; Orchidaceae - genetics ; Orchidaceae - growth & development ; Orchidaceae - physiology ; Orchids ; PeF3’H ; pH effects ; Phalaenopsis ; Pigmentation ; Sequence analysis ; Substrates</subject><ispartof>BMC plant biology, 2020-05, Vol.20 (1), p.212-212, Article 212</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203</citedby><cites>FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203</cites><orcidid>0000-0002-7323-7434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218627/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2404449492?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32397954$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Che-Yu</creatorcontrib><creatorcontrib>Rengasamy, Krishna Preethi</creatorcontrib><creatorcontrib>Huang, Li-Min</creatorcontrib><creatorcontrib>Hsu, Chia-Chi</creatorcontrib><creatorcontrib>Jeng, Mei-Fen</creatorcontrib><creatorcontrib>Chen, Wen-Huei</creatorcontrib><creatorcontrib>Chen, Hong-Hwa</creatorcontrib><title>Assessment of violet-blue color formation in Phalaenopsis orchids</title><title>BMC plant biology</title><addtitle>BMC Plant Biol</addtitle><description>Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis.
Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al
, Ca
and Fe
) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis.
Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al
, Ca
and Fe
to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.</description><subject>Accumulation</subject><subject>Aluminum</subject><subject>Analysis</subject><subject>Anthocyanins</subject><subject>Anthocyanins - metabolism</subject><subject>Aromatic compounds</subject><subject>Biosynthesis</subject><subject>Calcium</subject><subject>Calcium ions</subject><subject>Cash crops</subject><subject>Color</subject><subject>Cultivars</subject><subject>Cytochrome</subject><subject>Delphinidin</subject><subject>DgF3’5’H</subject><subject>Enzymes</subject><subject>Ferric ions</subject><subject>Flavonoids</subject><subject>Flowers</subject><subject>Flowers & plants</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Flowers - physiology</subject><subject>Gene expression</subject><subject>Horticulture</subject><subject>Iron</subject><subject>Metal ions</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Orchidaceae - genetics</subject><subject>Orchidaceae - growth & development</subject><subject>Orchidaceae - physiology</subject><subject>Orchids</subject><subject>PeF3’H</subject><subject>pH effects</subject><subject>Phalaenopsis</subject><subject>Pigmentation</subject><subject>Sequence analysis</subject><subject>Substrates</subject><issn>1471-2229</issn><issn>1471-2229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1vFCEYhSdGY2v1D3hhJvFGL6byAjvAjcmmsbpJE40f14TPXTYzwwozjf77Mt1aO8YQAoHnPcDhVNVLQOcAvH2XAXOGGoTnThFu2KPqFCiDBmMsHj-Yn1TPct4jBIxT8bQ6IZgIJlb0tFqvc3Y5924Y6-jr6xA7Nza6m1xtYhdT7WPq1RjiUIeh_rJTnXJDPOSQ65jMLtj8vHriVZfdi7vxrPpx-eH7xafm6vPHzcX6qjEtbceGEWa1NqBb4b0mVGgCHpUrrcCBw9hgyrSg1CosyuWM9154TjhRdsUBI3JWbY66Nqq9PKTQq_RbRhXk7UJMW6nSGEznJLfOggbNneIUeao4WLBUacGx19YXrfdHrcOke2dNeX1S3UJ0uTOEndzGa8lwMR6zIvDmTiDFn5PLo-xDNq7r1ODilOX8HZQCAVLQ1_-g-ziloVg1U5RSQQX-S21VeUAYfCznmllUrsuBlHJoZ-r8P1Rp1vXBxMH5UNYXBW8XBYUZ3a9xq6ac5ebb1yWLj6xJMefk_L0fgOQcOHkMnCyBk7eBk7MRrx46eV_yJ2HkBpkZzts</recordid><startdate>20200512</startdate><enddate>20200512</enddate><creator>Liang, Che-Yu</creator><creator>Rengasamy, Krishna Preethi</creator><creator>Huang, Li-Min</creator><creator>Hsu, Chia-Chi</creator><creator>Jeng, Mei-Fen</creator><creator>Chen, Wen-Huei</creator><creator>Chen, Hong-Hwa</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7323-7434</orcidid></search><sort><creationdate>20200512</creationdate><title>Assessment of violet-blue color formation in Phalaenopsis orchids</title><author>Liang, Che-Yu ; Rengasamy, Krishna Preethi ; Huang, Li-Min ; Hsu, Chia-Chi ; Jeng, Mei-Fen ; Chen, Wen-Huei ; Chen, Hong-Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accumulation</topic><topic>Aluminum</topic><topic>Analysis</topic><topic>Anthocyanins</topic><topic>Anthocyanins - metabolism</topic><topic>Aromatic compounds</topic><topic>Biosynthesis</topic><topic>Calcium</topic><topic>Calcium ions</topic><topic>Cash crops</topic><topic>Color</topic><topic>Cultivars</topic><topic>Cytochrome</topic><topic>Delphinidin</topic><topic>DgF3’5’H</topic><topic>Enzymes</topic><topic>Ferric ions</topic><topic>Flavonoids</topic><topic>Flowers</topic><topic>Flowers & plants</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Flowers - physiology</topic><topic>Gene expression</topic><topic>Horticulture</topic><topic>Iron</topic><topic>Metal ions</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Orchidaceae - genetics</topic><topic>Orchidaceae - growth & development</topic><topic>Orchidaceae - physiology</topic><topic>Orchids</topic><topic>PeF3’H</topic><topic>pH effects</topic><topic>Phalaenopsis</topic><topic>Pigmentation</topic><topic>Sequence analysis</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Che-Yu</creatorcontrib><creatorcontrib>Rengasamy, Krishna Preethi</creatorcontrib><creatorcontrib>Huang, Li-Min</creatorcontrib><creatorcontrib>Hsu, Chia-Chi</creatorcontrib><creatorcontrib>Jeng, Mei-Fen</creatorcontrib><creatorcontrib>Chen, Wen-Huei</creatorcontrib><creatorcontrib>Chen, Hong-Hwa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Che-Yu</au><au>Rengasamy, Krishna Preethi</au><au>Huang, Li-Min</au><au>Hsu, Chia-Chi</au><au>Jeng, Mei-Fen</au><au>Chen, Wen-Huei</au><au>Chen, Hong-Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of violet-blue color formation in Phalaenopsis orchids</atitle><jtitle>BMC plant biology</jtitle><addtitle>BMC Plant Biol</addtitle><date>2020-05-12</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>212</spage><epage>212</epage><pages>212-212</pages><artnum>212</artnum><issn>1471-2229</issn><eissn>1471-2229</eissn><abstract>Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis.
Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al
, Ca
and Fe
) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis.
Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al
, Ca
and Fe
to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>32397954</pmid><doi>10.1186/s12870-020-02402-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7323-7434</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2229 |
ispartof | BMC plant biology, 2020-05, Vol.20 (1), p.212-212, Article 212 |
issn | 1471-2229 1471-2229 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8ded1b1b8ea840f4a81d1d4ab982fbdf |
source | NCBI_PubMed Central(免费); Publicly Available Content Database |
subjects | Accumulation Aluminum Analysis Anthocyanins Anthocyanins - metabolism Aromatic compounds Biosynthesis Calcium Calcium ions Cash crops Color Cultivars Cytochrome Delphinidin DgF3’5’H Enzymes Ferric ions Flavonoids Flowers Flowers & plants Flowers - genetics Flowers - growth & development Flowers - physiology Gene expression Horticulture Iron Metal ions Molecular docking Molecular Docking Simulation Orchidaceae - genetics Orchidaceae - growth & development Orchidaceae - physiology Orchids PeF3’H pH effects Phalaenopsis Pigmentation Sequence analysis Substrates |
title | Assessment of violet-blue color formation in Phalaenopsis orchids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20violet-blue%20color%20formation%20in%20Phalaenopsis%20orchids&rft.jtitle=BMC%20plant%20biology&rft.au=Liang,%20Che-Yu&rft.date=2020-05-12&rft.volume=20&rft.issue=1&rft.spage=212&rft.epage=212&rft.pages=212-212&rft.artnum=212&rft.issn=1471-2229&rft.eissn=1471-2229&rft_id=info:doi/10.1186/s12870-020-02402-7&rft_dat=%3Cgale_doaj_%3EA627448162%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c646t-737dbbc1b69ffb349b31f000151e1e22c247b944da29397cfff9f8383ad581203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2404449492&rft_id=info:pmid/32397954&rft_galeid=A627448162&rfr_iscdi=true |