Loading…

URBAN VEGETATION CLASSIFICATION WITH NDVI THRESHOLD VALUE METHOD WITH VERY HIGH RESOLUTION (VHR) PLEIADES IMAGERY

Recently the sensing data for urban mapping used is in high demand together with the accessible of very high resolution (VHR) satellite data such as Worldview and Pleiades. This article presents the use of very high resolution (VHR) remote sensing data for urban vegetation mapping. The research obje...

Full description

Saved in:
Bibliographic Details
Main Authors: Hashim, H., Abd Latif, Z., Adnan, N. A.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently the sensing data for urban mapping used is in high demand together with the accessible of very high resolution (VHR) satellite data such as Worldview and Pleiades. This article presents the use of very high resolution (VHR) remote sensing data for urban vegetation mapping. The research objectives were to assess the use of Pleiades imagery to extricate the data of urban vegetation in urban area of Kuala Lumpur. Normalized Difference Vegetation Index (NDVI) were employs with VHR data to find Vegetation Index for classification process of vegetation and non-vegetation classes. Land use classes are easily determined by computing their Normalized Difference Vegetation Index for Land use land cover classification. Maximum likelihood was conducted for the classification phase. NDVI were extracted from the imagery to assist the process of classification. NDVI method is use by referring to its features such as vegetation at different NDVI threshold values. The result showed three classes of land cover that consist of low vegetation, high vegetation and non-vegetation area. The accuracy assessment gained was then being implemented using the visual interpretation and overall accuracy achieved was 70.740% with kappa coefficient of 0.5. This study gained the proposed threshold method using NDVI value able to identify and classify urban vegetation with the use of VHR Pleiades imagery and need further improvement when apply to different area of interest and different land use land cover characteristics. The information achieved from the result able to help planners for future planning for conservation of vegetation in urban area.
ISSN:2194-9034
1682-1750
2194-9034
DOI:10.5194/isprs-archives-XLII-4-W16-237-2019