Loading…

Recirculating flows analysis and estimation inside channels

The recirculation which is developed during the flows inside pipes present a high interest in many industrial applications. In the present paper, a Cartesian grid method is presented which can be applied in pipes geometry approximation, even if the solid bounds are not lying on grid lines. A refinem...

Full description

Saved in:
Bibliographic Details
Main Authors: Georgantopoulou, Christina G., Vasilikos, Nikolaos S., Georgantopoulos, George A.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-6e20a1d315eb58b767f881670a168206458919fe8cd6acc5d47ab0058aa352673
cites cdi_FETCH-LOGICAL-c397t-6e20a1d315eb58b767f881670a168206458919fe8cd6acc5d47ab0058aa352673
container_end_page
container_issue
container_start_page 1001
container_title
container_volume 172
creator Georgantopoulou, Christina G.
Vasilikos, Nikolaos S.
Georgantopoulos, George A.
description The recirculation which is developed during the flows inside pipes present a high interest in many industrial applications. In the present paper, a Cartesian grid method is presented which can be applied in pipes geometry approximation, even if the solid bounds are not lying on grid lines. A refinement technique using rectangular nested sub-girds is applied in order to avoid the unnecessary grid cells in the areas with no particular flow interest and cluster the grid when is needed. Important and useful for the industries results are extracted by these numerical simulations and estimations regarding the exact position and extend of the recirculation zones and the relating points. The estimation is taking placefor incompressible laminar, viscous flows inside inclined step channelsfor a range of inclination angles and Reynolds numbers values. The Navier – Stokes equations are solved using the artificial compressibility method according to the necessary boundary conditions arrangement. Flow results are presented for several grid sizes and Reynolds numbers focused on the recirculationzones length, in upper and lower channel’ walls. Accepted accuracy of the flow results is produced using the aforementioned refinement algorithm, while the flow zones can be located according to the inlet flow rate, in order to avoid possible problems in the industries as corrosion or energy losses.
doi_str_mv 10.1051/matecconf/201817201001
format conference_proceeding
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8e13bfec434a42428c55707e3a760434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8e13bfec434a42428c55707e3a760434</doaj_id><sourcerecordid>2056864555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6e20a1d315eb58b767f881670a168206458919fe8cd6acc5d47ab0058aa352673</originalsourceid><addsrcrecordid>eNpNUF1LAzEQDKJgqf0LcuBz7Sa5fBw-SfGjUBBEwbewl8vVlPNSkyvSf29qpfRldxmGmdkh5JrCLQVBZ184OGtD384YUE1VngD0jIwYk3TKuPw4P7kvySSlNWQGrxRUakTuXp310W47HHy_Ktou_KQCe-x2ye-PpnBp8NnFh77wffKNK-wn9r3r0hW5aLFLbvK_x-T98eFt_jxdvjwt5vfLqc0uw1Q6BkgbToWrha6VVK3WVKoMSs1AlkJXtGqdto1Ea0VTKqwBhEbkgknFx2Rx0G0Crs0m5jhxZwJ68weEuDIYB287Z7SjvG6dLXmJJSuZtkIoUI6jkpDBrHVz0NrE8L3Nv5l12Mb8bzIMhNQ5jRCZJQ8sG0NK0bVHVwpm37s59m5Oe-e_tO52ow</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2056864555</pqid></control><display><type>conference_proceeding</type><title>Recirculating flows analysis and estimation inside channels</title><source>Publicly Available Content (ProQuest)</source><creator>Georgantopoulou, Christina G. ; Vasilikos, Nikolaos S. ; Georgantopoulos, George A.</creator><contributor>Sridevi, S. ; Jayakumar, V. ; Ranganathan, S. ; Devika, D.</contributor><creatorcontrib>Georgantopoulou, Christina G. ; Vasilikos, Nikolaos S. ; Georgantopoulos, George A. ; Sridevi, S. ; Jayakumar, V. ; Ranganathan, S. ; Devika, D.</creatorcontrib><description>The recirculation which is developed during the flows inside pipes present a high interest in many industrial applications. In the present paper, a Cartesian grid method is presented which can be applied in pipes geometry approximation, even if the solid bounds are not lying on grid lines. A refinement technique using rectangular nested sub-girds is applied in order to avoid the unnecessary grid cells in the areas with no particular flow interest and cluster the grid when is needed. Important and useful for the industries results are extracted by these numerical simulations and estimations regarding the exact position and extend of the recirculation zones and the relating points. The estimation is taking placefor incompressible laminar, viscous flows inside inclined step channelsfor a range of inclination angles and Reynolds numbers values. The Navier – Stokes equations are solved using the artificial compressibility method according to the necessary boundary conditions arrangement. Flow results are presented for several grid sizes and Reynolds numbers focused on the recirculationzones length, in upper and lower channel’ walls. Accepted accuracy of the flow results is produced using the aforementioned refinement algorithm, while the flow zones can be located according to the inlet flow rate, in order to avoid possible problems in the industries as corrosion or energy losses.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/201817201001</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Angles (geometry) ; Compressibility ; Computational fluid dynamics ; Computer simulation ; Flow velocity ; Fluid flow ; Grid method ; Inclination ; Incompressible flow ; Industrial applications ; Inlet flow ; Laminar flow ; Navier-Stokes equations ; Pipes</subject><ispartof>MATEC web of conferences, 2018, Vol.172, p.1001</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6e20a1d315eb58b767f881670a168206458919fe8cd6acc5d47ab0058aa352673</citedby><cites>FETCH-LOGICAL-c397t-6e20a1d315eb58b767f881670a168206458919fe8cd6acc5d47ab0058aa352673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2056864555?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><contributor>Sridevi, S.</contributor><contributor>Jayakumar, V.</contributor><contributor>Ranganathan, S.</contributor><contributor>Devika, D.</contributor><creatorcontrib>Georgantopoulou, Christina G.</creatorcontrib><creatorcontrib>Vasilikos, Nikolaos S.</creatorcontrib><creatorcontrib>Georgantopoulos, George A.</creatorcontrib><title>Recirculating flows analysis and estimation inside channels</title><title>MATEC web of conferences</title><description>The recirculation which is developed during the flows inside pipes present a high interest in many industrial applications. In the present paper, a Cartesian grid method is presented which can be applied in pipes geometry approximation, even if the solid bounds are not lying on grid lines. A refinement technique using rectangular nested sub-girds is applied in order to avoid the unnecessary grid cells in the areas with no particular flow interest and cluster the grid when is needed. Important and useful for the industries results are extracted by these numerical simulations and estimations regarding the exact position and extend of the recirculation zones and the relating points. The estimation is taking placefor incompressible laminar, viscous flows inside inclined step channelsfor a range of inclination angles and Reynolds numbers values. The Navier – Stokes equations are solved using the artificial compressibility method according to the necessary boundary conditions arrangement. Flow results are presented for several grid sizes and Reynolds numbers focused on the recirculationzones length, in upper and lower channel’ walls. Accepted accuracy of the flow results is produced using the aforementioned refinement algorithm, while the flow zones can be located according to the inlet flow rate, in order to avoid possible problems in the industries as corrosion or energy losses.</description><subject>Angles (geometry)</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Grid method</subject><subject>Inclination</subject><subject>Incompressible flow</subject><subject>Industrial applications</subject><subject>Inlet flow</subject><subject>Laminar flow</subject><subject>Navier-Stokes equations</subject><subject>Pipes</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LAzEQDKJgqf0LcuBz7Sa5fBw-SfGjUBBEwbewl8vVlPNSkyvSf29qpfRldxmGmdkh5JrCLQVBZ184OGtD384YUE1VngD0jIwYk3TKuPw4P7kvySSlNWQGrxRUakTuXp310W47HHy_Ktou_KQCe-x2ye-PpnBp8NnFh77wffKNK-wn9r3r0hW5aLFLbvK_x-T98eFt_jxdvjwt5vfLqc0uw1Q6BkgbToWrha6VVK3WVKoMSs1AlkJXtGqdto1Ea0VTKqwBhEbkgknFx2Rx0G0Crs0m5jhxZwJ68weEuDIYB287Z7SjvG6dLXmJJSuZtkIoUI6jkpDBrHVz0NrE8L3Nv5l12Mb8bzIMhNQ5jRCZJQ8sG0NK0bVHVwpm37s59m5Oe-e_tO52ow</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Georgantopoulou, Christina G.</creator><creator>Vasilikos, Nikolaos S.</creator><creator>Georgantopoulos, George A.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Recirculating flows analysis and estimation inside channels</title><author>Georgantopoulou, Christina G. ; Vasilikos, Nikolaos S. ; Georgantopoulos, George A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6e20a1d315eb58b767f881670a168206458919fe8cd6acc5d47ab0058aa352673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Angles (geometry)</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Grid method</topic><topic>Inclination</topic><topic>Incompressible flow</topic><topic>Industrial applications</topic><topic>Inlet flow</topic><topic>Laminar flow</topic><topic>Navier-Stokes equations</topic><topic>Pipes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgantopoulou, Christina G.</creatorcontrib><creatorcontrib>Vasilikos, Nikolaos S.</creatorcontrib><creatorcontrib>Georgantopoulos, George A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgantopoulou, Christina G.</au><au>Vasilikos, Nikolaos S.</au><au>Georgantopoulos, George A.</au><au>Sridevi, S.</au><au>Jayakumar, V.</au><au>Ranganathan, S.</au><au>Devika, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recirculating flows analysis and estimation inside channels</atitle><btitle>MATEC web of conferences</btitle><date>2018-01-01</date><risdate>2018</risdate><volume>172</volume><spage>1001</spage><pages>1001-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>The recirculation which is developed during the flows inside pipes present a high interest in many industrial applications. In the present paper, a Cartesian grid method is presented which can be applied in pipes geometry approximation, even if the solid bounds are not lying on grid lines. A refinement technique using rectangular nested sub-girds is applied in order to avoid the unnecessary grid cells in the areas with no particular flow interest and cluster the grid when is needed. Important and useful for the industries results are extracted by these numerical simulations and estimations regarding the exact position and extend of the recirculation zones and the relating points. The estimation is taking placefor incompressible laminar, viscous flows inside inclined step channelsfor a range of inclination angles and Reynolds numbers values. The Navier – Stokes equations are solved using the artificial compressibility method according to the necessary boundary conditions arrangement. Flow results are presented for several grid sizes and Reynolds numbers focused on the recirculationzones length, in upper and lower channel’ walls. Accepted accuracy of the flow results is produced using the aforementioned refinement algorithm, while the flow zones can be located according to the inlet flow rate, in order to avoid possible problems in the industries as corrosion or energy losses.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/201817201001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2261-236X
ispartof MATEC web of conferences, 2018, Vol.172, p.1001
issn 2261-236X
2274-7214
2261-236X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8e13bfec434a42428c55707e3a760434
source Publicly Available Content (ProQuest)
subjects Angles (geometry)
Compressibility
Computational fluid dynamics
Computer simulation
Flow velocity
Fluid flow
Grid method
Inclination
Incompressible flow
Industrial applications
Inlet flow
Laminar flow
Navier-Stokes equations
Pipes
title Recirculating flows analysis and estimation inside channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recirculating%20flows%20analysis%20and%20estimation%20inside%20channels&rft.btitle=MATEC%20web%20of%20conferences&rft.au=Georgantopoulou,%20Christina%20G.&rft.date=2018-01-01&rft.volume=172&rft.spage=1001&rft.pages=1001-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/201817201001&rft_dat=%3Cproquest_doaj_%3E2056864555%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-6e20a1d315eb58b767f881670a168206458919fe8cd6acc5d47ab0058aa352673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056864555&rft_id=info:pmid/&rfr_iscdi=true