Loading…

Potent telomerase activators from a novel sapogenin via biotransformation utilizing Camarosporium laburnicola, an endophytic fungus

Cycloartane-type triterpenoids possess important biological activities, including immunostimulant, wound healing, and telomerase activation. Biotransformation is one of the derivatization strategies of natural products to improve their bioactivities. Endophytic fungi have attracted attention in biot...

Full description

Saved in:
Bibliographic Details
Published in:Microbial cell factories 2023-04, Vol.22 (1), p.66-66, Article 66
Main Authors: Küçüksolak, Melis, Yılmaz, Sinem, Ballar-Kırmızıbayrak, Petek, Bedir, Erdal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cycloartane-type triterpenoids possess important biological activities, including immunostimulant, wound healing, and telomerase activation. Biotransformation is one of the derivatization strategies of natural products to improve their bioactivities. Endophytic fungi have attracted attention in biotransformation studies because of their ability to perform modifications in complex structures with a high degree of stereospecificity. This study focuses on biotransformation studies on cyclocephagenol (1), a novel cycloartane-type sapogenin from Astragalus species, and its 12-hydroxy derivatives (2 and 3) to obtain new telomerase activators. Since the hTERT protein levels of cyclocephagenol (1) and its 12-hydroxy derivatives (2 and 3) on HEKn cells were found to be notable, biotransformation studies were carried out on cyclocephagenol and its 12-hydroxy derivatives using Camarosporium laburnicola, an endophytic fungus isolated from Astragalus angustifolius. Later, immunoblotting and PCR-based ELISA assay were used to screen starting compounds and biotransformation products for their effects on hTERT protein levels and telomerase activation. All compounds showed improved telomerase activation compared to the control group. As a result of biotransformation studies, seven new metabolites were obtained and characterized, verifying the potential of C. laburnicola as a biocatalyst. Additionally, the bioactivity results showed that this endophytic biocatalyst is unique in transforming the metabolites of its host to afford potent telomerase activators.
ISSN:1475-2859
1475-2859
DOI:10.1186/s12934-023-02069-3