Loading…
Control of longitudinal flight dynamics of a fixedwing UAV using LQR, LQG and nonlinear control
This paper aim is to present a comparative study between Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG) and nonlinear controllers for pitch control of a fixed-wing Unmanned Aerial Vehicle (UAV). Due to a good stability margin and strong robustness LQR has been selected. LQG was ch...
Saved in:
Published in: | E3S web of conferences 2019-01, Vol.104, p.2001 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper aim is to present a comparative study between Linear Quadratic Regulator (LQR), Linear Quadratic Gaussian (LQG) and nonlinear controllers for pitch control of a fixed-wing Unmanned Aerial Vehicle (UAV). Due to a good stability margin and strong robustness LQR has been selected. LQG was chosen because is able to overcome external disturbances. Kalman Filter controller was also introduced to the fixed-wing UAV flight control. Further, we designed an autopilot that controls the pitch angle of the fixed-wing UAV. In the end, the control laws are simulated in Matlab/Simulink. The results obtained are compared to see which method is faster, more reliable and more robust. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/201910402001 |