Loading…
Segmentation-Based Filtering of Airborne LiDAR Point Clouds by Progressive Densification of Terrain Segments
Filtering is one of the core post-processing steps for Airborne Laser Scanning (ALS) point clouds. A segmentation-based filtering (SBF) method is proposed herein. This method is composed of three key steps: point cloud segmentation, multiple echoes analysis, and iterative judgment. Moreover, the thi...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2014-02, Vol.6 (2), p.1294-1326 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Filtering is one of the core post-processing steps for Airborne Laser Scanning (ALS) point clouds. A segmentation-based filtering (SBF) method is proposed herein. This method is composed of three key steps: point cloud segmentation, multiple echoes analysis, and iterative judgment. Moreover, the third step is our main contribution. Particularly, the iterative judgment is based on the framework of the classic progressive TIN (triangular irregular network) densification (PTD) method, but with basic processing unit being a segment rather than a single point. Seven benchmark datasets provided by ISPRS Working Group III/3 are utilized to test the SBF algorithm and the classic PTD method. Experimental results suggest that, compared with the PTD method, the SBF approach is capable of preserving discontinuities of landscapes and removing the lower parts of large objects attached on the ground surface. As a result, the SBF approach is able to reduce omission errors and total errors by 18.26% and 11.47% respectively, which would significantly decrease the cost of manual operation required in post-processing. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs6021294 |