Loading…

Effect of 7-Methylsulfinylheptyl Isothiocyanate on the Inhibition of Melanogenesis in B16-F1 Cells

Skin aging, characterized by hyperpigmentation, inflammation, wrinkles, and skin cancer, is influenced by intrinsic and extrinsic factors with synergistic effects. Autophagy maintains the homeostatic balance between the degradation, synthesis, and recycling of cellular proteins and organelles, and p...

Full description

Saved in:
Bibliographic Details
Published in:Life (Basel, Switzerland) Switzerland), 2021-02, Vol.11 (2), p.162
Main Authors: Kim, A-Ju, Park, Jung Eun, Cho, Yeong Hee, Lim, Do Sung, Lee, Jung Sup
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Skin aging, characterized by hyperpigmentation, inflammation, wrinkles, and skin cancer, is influenced by intrinsic and extrinsic factors with synergistic effects. Autophagy maintains the homeostatic balance between the degradation, synthesis, and recycling of cellular proteins and organelles, and plays important roles in several cellular and biological processes, including aging. The compound 7-methylsulfinylheptyl isothiocyanate (7-MSI) is a sulfur-containing phytochemical produced by various plants, particularly cruciferous vegetables, with reported anti-inflammatory properties and a role in pathogen defense; however, its effects on skin whitening have not been studied in detail. The purpose of this study was to observe the effects of 7-MSI on skin whitening and autophagy in cultured murine melanoma (B16-F1) cells. Western blotting was used to evaluate the impact of 7-MSI on melanogenesis-, tyrosinase-, and autophagy-associated proteins. The levels of the melanogenesis-associated protein's microphthalmia-associated transcription factor (MITF) and tyrosinase and tyrosinase-related protein-1 were decreased by treatment with 7-MSI under melanogenesis induction. Melanin synthesis also decreased by approximately 63% after treatment with 7-MSI for 73 h, compared with that non-treated controls. In addition, autophagosome formation and the expression levels of the autophagy-related proteins mTOR, p-mTOR, Beclin-1, Atg12, and LC3 were higher in 7-MSI-treated B16-F1 cells than in non-treated cells. These results indicate that 7-MSI can inhibit melanin synthesis in B16-F1 cells by suppressing melanogenesis and autophagy activation and thus can potentially be used as a novel multifunctional cosmetic agent.
ISSN:2075-1729
2075-1729
DOI:10.3390/life11020162