Loading…
A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment
The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and in...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (21), p.5112 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43 |
container_end_page | |
container_issue | 21 |
container_start_page | 5112 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 15 |
creator | Wang, Zihan Xu, Xiangyang He, Xuhui Wei, Xiaojun Yang, Hao |
description | The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and independence from environmental influences. In this paper, based on B-spline fitting and iterative nearest point (ICP) alignment, the calculation of the difference between the radial distance and the design radius of a tunnel is transformed into a curve transformation that iterates over the nearest-neighbor points and calculates the difference in the distance between the corresponding points. The innovation of this paper is that the high-precision tunnel deformation monitoring method integrating B-spline fitting and ICP alignment can automatically compensate for the missing point clouds, is not affected by the point clouds of the tunnel inner and outer liner appendages, is more sensitive in the local deformation feedback and can be applied to a variety of tunnel shapes. The results indicate that our method maximally improves the accuracy of the horizontal convergence calculation by 28.6 mm and the accuracy of the vault settlement by 27.8 mm in comparison with the least squares circle fitting algorithm. |
doi_str_mv | 10.3390/rs15215112 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8e781aff213a4fa3b665049d09e480e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772535814</galeid><doaj_id>oai_doaj_org_article_8e781aff213a4fa3b665049d09e480e8</doaj_id><sourcerecordid>A772535814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43</originalsourceid><addsrcrecordid>eNpNkV9rHCEUxYfQQkKal3wCoW-FSa86jvo43TbNQkoLSZ7F8c_EZVanOhvIt6_Jhrb64OVw_HG4p2kuMVxRKuFzLpgRzDAmJ80ZAU7ajkjy7r_5tLkoZQf1UIoldGfNMqAfbn1MFvmU0SbFJ5cnF1f01VVhr9eQIhqinp9LKCh5pNHdY3CzRfeHGN2MttGkvKRcnXFCX9q7ZQ7Roeuwvgo6WrTd_ELDHKa4r-APzXuv5-Iu3t7z5uH62_3mpr39-X27GW5bQ3u6tiMH6xmMxGkjOO6FsHTkrOtBeutMx8FQy8hIYJSMgTSSct0DZxwYUNPR82Z75Nqkd2rJYa_zs0o6qFch5UnpvAYzOyUcF1h7TzDVndd07HsGnbQgXSfAicr6eGQtOf0-uLKqXTrkupSiiBCC1gAUV9fV0TXpCg3RpzVrU691-2BSdD5UfeCcMMoEfon46fjB5FRKdv5vTAzqpVH1r1H6B4tgkIs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888355031</pqid></control><display><type>article</type><title>A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment</title><source>Publicly Available Content (ProQuest)</source><creator>Wang, Zihan ; Xu, Xiangyang ; He, Xuhui ; Wei, Xiaojun ; Yang, Hao</creator><creatorcontrib>Wang, Zihan ; Xu, Xiangyang ; He, Xuhui ; Wei, Xiaojun ; Yang, Hao</creatorcontrib><description>The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and independence from environmental influences. In this paper, based on B-spline fitting and iterative nearest point (ICP) alignment, the calculation of the difference between the radial distance and the design radius of a tunnel is transformed into a curve transformation that iterates over the nearest-neighbor points and calculates the difference in the distance between the corresponding points. The innovation of this paper is that the high-precision tunnel deformation monitoring method integrating B-spline fitting and ICP alignment can automatically compensate for the missing point clouds, is not affected by the point clouds of the tunnel inner and outer liner appendages, is more sensitive in the local deformation feedback and can be applied to a variety of tunnel shapes. The results indicate that our method maximally improves the accuracy of the horizontal convergence calculation by 28.6 mm and the accuracy of the vault settlement by 27.8 mm in comparison with the least squares circle fitting algorithm.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15215112</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D laser scanning technology ; Algorithms ; Alignment ; Appendages ; B-spline fitting ; Convergence ; convergent deformation ; Data processing ; Deformation ; Deformation analysis ; high-precision tunnel modelling ; ICP alignment ; Innovations ; Lasers ; Mathematical analysis ; Measurement methods ; Methods ; Monitoring ; Monitoring methods ; Nearest-neighbor ; Parameter estimation ; Scanning devices ; Tunneling shields ; Wavelet transforms</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (21), p.5112</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43</citedby><cites>FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43</cites><orcidid>0000-0001-7883-9808 ; 0000-0001-9346-0943 ; 0000-0003-2746-182X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888355031/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888355031?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>He, Xuhui</creatorcontrib><creatorcontrib>Wei, Xiaojun</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><title>A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment</title><title>Remote sensing (Basel, Switzerland)</title><description>The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and independence from environmental influences. In this paper, based on B-spline fitting and iterative nearest point (ICP) alignment, the calculation of the difference between the radial distance and the design radius of a tunnel is transformed into a curve transformation that iterates over the nearest-neighbor points and calculates the difference in the distance between the corresponding points. The innovation of this paper is that the high-precision tunnel deformation monitoring method integrating B-spline fitting and ICP alignment can automatically compensate for the missing point clouds, is not affected by the point clouds of the tunnel inner and outer liner appendages, is more sensitive in the local deformation feedback and can be applied to a variety of tunnel shapes. The results indicate that our method maximally improves the accuracy of the horizontal convergence calculation by 28.6 mm and the accuracy of the vault settlement by 27.8 mm in comparison with the least squares circle fitting algorithm.</description><subject>3D laser scanning technology</subject><subject>Algorithms</subject><subject>Alignment</subject><subject>Appendages</subject><subject>B-spline fitting</subject><subject>Convergence</subject><subject>convergent deformation</subject><subject>Data processing</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>high-precision tunnel modelling</subject><subject>ICP alignment</subject><subject>Innovations</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Nearest-neighbor</subject><subject>Parameter estimation</subject><subject>Scanning devices</subject><subject>Tunneling shields</subject><subject>Wavelet transforms</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9rHCEUxYfQQkKal3wCoW-FSa86jvo43TbNQkoLSZ7F8c_EZVanOhvIt6_Jhrb64OVw_HG4p2kuMVxRKuFzLpgRzDAmJ80ZAU7ajkjy7r_5tLkoZQf1UIoldGfNMqAfbn1MFvmU0SbFJ5cnF1f01VVhr9eQIhqinp9LKCh5pNHdY3CzRfeHGN2MttGkvKRcnXFCX9q7ZQ7Roeuwvgo6WrTd_ELDHKa4r-APzXuv5-Iu3t7z5uH62_3mpr39-X27GW5bQ3u6tiMH6xmMxGkjOO6FsHTkrOtBeutMx8FQy8hIYJSMgTSSct0DZxwYUNPR82Z75Nqkd2rJYa_zs0o6qFch5UnpvAYzOyUcF1h7TzDVndd07HsGnbQgXSfAicr6eGQtOf0-uLKqXTrkupSiiBCC1gAUV9fV0TXpCg3RpzVrU691-2BSdD5UfeCcMMoEfon46fjB5FRKdv5vTAzqpVH1r1H6B4tgkIs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Wang, Zihan</creator><creator>Xu, Xiangyang</creator><creator>He, Xuhui</creator><creator>Wei, Xiaojun</creator><creator>Yang, Hao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid><orcidid>https://orcid.org/0000-0001-9346-0943</orcidid><orcidid>https://orcid.org/0000-0003-2746-182X</orcidid></search><sort><creationdate>20231101</creationdate><title>A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment</title><author>Wang, Zihan ; Xu, Xiangyang ; He, Xuhui ; Wei, Xiaojun ; Yang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D laser scanning technology</topic><topic>Algorithms</topic><topic>Alignment</topic><topic>Appendages</topic><topic>B-spline fitting</topic><topic>Convergence</topic><topic>convergent deformation</topic><topic>Data processing</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>high-precision tunnel modelling</topic><topic>ICP alignment</topic><topic>Innovations</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Nearest-neighbor</topic><topic>Parameter estimation</topic><topic>Scanning devices</topic><topic>Tunneling shields</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>He, Xuhui</creatorcontrib><creatorcontrib>Wei, Xiaojun</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zihan</au><au>Xu, Xiangyang</au><au>He, Xuhui</au><au>Wei, Xiaojun</au><au>Yang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>21</issue><spage>5112</spage><pages>5112-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and independence from environmental influences. In this paper, based on B-spline fitting and iterative nearest point (ICP) alignment, the calculation of the difference between the radial distance and the design radius of a tunnel is transformed into a curve transformation that iterates over the nearest-neighbor points and calculates the difference in the distance between the corresponding points. The innovation of this paper is that the high-precision tunnel deformation monitoring method integrating B-spline fitting and ICP alignment can automatically compensate for the missing point clouds, is not affected by the point clouds of the tunnel inner and outer liner appendages, is more sensitive in the local deformation feedback and can be applied to a variety of tunnel shapes. The results indicate that our method maximally improves the accuracy of the horizontal convergence calculation by 28.6 mm and the accuracy of the vault settlement by 27.8 mm in comparison with the least squares circle fitting algorithm.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15215112</doi><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid><orcidid>https://orcid.org/0000-0001-9346-0943</orcidid><orcidid>https://orcid.org/0000-0003-2746-182X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (21), p.5112 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8e781aff213a4fa3b665049d09e480e8 |
source | Publicly Available Content (ProQuest) |
subjects | 3D laser scanning technology Algorithms Alignment Appendages B-spline fitting Convergence convergent deformation Data processing Deformation Deformation analysis high-precision tunnel modelling ICP alignment Innovations Lasers Mathematical analysis Measurement methods Methods Monitoring Monitoring methods Nearest-neighbor Parameter estimation Scanning devices Tunneling shields Wavelet transforms |
title | A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T11%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Convergent%20Deformation%20Analysis%20of%20a%20Shield%20Tunnel%20Incorporating%20B-Spline%20Fitting%20and%20ICP%20Alignment&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Wang,%20Zihan&rft.date=2023-11-01&rft.volume=15&rft.issue=21&rft.spage=5112&rft.pages=5112-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15215112&rft_dat=%3Cgale_doaj_%3EA772535814%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888355031&rft_id=info:pmid/&rft_galeid=A772535814&rfr_iscdi=true |