Loading…

A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment

The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and in...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (21), p.5112
Main Authors: Wang, Zihan, Xu, Xiangyang, He, Xuhui, Wei, Xiaojun, Yang, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43
cites cdi_FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43
container_end_page
container_issue 21
container_start_page 5112
container_title Remote sensing (Basel, Switzerland)
container_volume 15
creator Wang, Zihan
Xu, Xiangyang
He, Xuhui
Wei, Xiaojun
Yang, Hao
description The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and independence from environmental influences. In this paper, based on B-spline fitting and iterative nearest point (ICP) alignment, the calculation of the difference between the radial distance and the design radius of a tunnel is transformed into a curve transformation that iterates over the nearest-neighbor points and calculates the difference in the distance between the corresponding points. The innovation of this paper is that the high-precision tunnel deformation monitoring method integrating B-spline fitting and ICP alignment can automatically compensate for the missing point clouds, is not affected by the point clouds of the tunnel inner and outer liner appendages, is more sensitive in the local deformation feedback and can be applied to a variety of tunnel shapes. The results indicate that our method maximally improves the accuracy of the horizontal convergence calculation by 28.6 mm and the accuracy of the vault settlement by 27.8 mm in comparison with the least squares circle fitting algorithm.
doi_str_mv 10.3390/rs15215112
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8e781aff213a4fa3b665049d09e480e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772535814</galeid><doaj_id>oai_doaj_org_article_8e781aff213a4fa3b665049d09e480e8</doaj_id><sourcerecordid>A772535814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43</originalsourceid><addsrcrecordid>eNpNkV9rHCEUxYfQQkKal3wCoW-FSa86jvo43TbNQkoLSZ7F8c_EZVanOhvIt6_Jhrb64OVw_HG4p2kuMVxRKuFzLpgRzDAmJ80ZAU7ajkjy7r_5tLkoZQf1UIoldGfNMqAfbn1MFvmU0SbFJ5cnF1f01VVhr9eQIhqinp9LKCh5pNHdY3CzRfeHGN2MttGkvKRcnXFCX9q7ZQ7Roeuwvgo6WrTd_ELDHKa4r-APzXuv5-Iu3t7z5uH62_3mpr39-X27GW5bQ3u6tiMH6xmMxGkjOO6FsHTkrOtBeutMx8FQy8hIYJSMgTSSct0DZxwYUNPR82Z75Nqkd2rJYa_zs0o6qFch5UnpvAYzOyUcF1h7TzDVndd07HsGnbQgXSfAicr6eGQtOf0-uLKqXTrkupSiiBCC1gAUV9fV0TXpCg3RpzVrU691-2BSdD5UfeCcMMoEfon46fjB5FRKdv5vTAzqpVH1r1H6B4tgkIs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888355031</pqid></control><display><type>article</type><title>A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment</title><source>Publicly Available Content (ProQuest)</source><creator>Wang, Zihan ; Xu, Xiangyang ; He, Xuhui ; Wei, Xiaojun ; Yang, Hao</creator><creatorcontrib>Wang, Zihan ; Xu, Xiangyang ; He, Xuhui ; Wei, Xiaojun ; Yang, Hao</creatorcontrib><description>The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and independence from environmental influences. In this paper, based on B-spline fitting and iterative nearest point (ICP) alignment, the calculation of the difference between the radial distance and the design radius of a tunnel is transformed into a curve transformation that iterates over the nearest-neighbor points and calculates the difference in the distance between the corresponding points. The innovation of this paper is that the high-precision tunnel deformation monitoring method integrating B-spline fitting and ICP alignment can automatically compensate for the missing point clouds, is not affected by the point clouds of the tunnel inner and outer liner appendages, is more sensitive in the local deformation feedback and can be applied to a variety of tunnel shapes. The results indicate that our method maximally improves the accuracy of the horizontal convergence calculation by 28.6 mm and the accuracy of the vault settlement by 27.8 mm in comparison with the least squares circle fitting algorithm.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs15215112</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D laser scanning technology ; Algorithms ; Alignment ; Appendages ; B-spline fitting ; Convergence ; convergent deformation ; Data processing ; Deformation ; Deformation analysis ; high-precision tunnel modelling ; ICP alignment ; Innovations ; Lasers ; Mathematical analysis ; Measurement methods ; Methods ; Monitoring ; Monitoring methods ; Nearest-neighbor ; Parameter estimation ; Scanning devices ; Tunneling shields ; Wavelet transforms</subject><ispartof>Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (21), p.5112</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43</citedby><cites>FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43</cites><orcidid>0000-0001-7883-9808 ; 0000-0001-9346-0943 ; 0000-0003-2746-182X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888355031/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888355031?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,75096</link.rule.ids></links><search><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>He, Xuhui</creatorcontrib><creatorcontrib>Wei, Xiaojun</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><title>A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment</title><title>Remote sensing (Basel, Switzerland)</title><description>The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and independence from environmental influences. In this paper, based on B-spline fitting and iterative nearest point (ICP) alignment, the calculation of the difference between the radial distance and the design radius of a tunnel is transformed into a curve transformation that iterates over the nearest-neighbor points and calculates the difference in the distance between the corresponding points. The innovation of this paper is that the high-precision tunnel deformation monitoring method integrating B-spline fitting and ICP alignment can automatically compensate for the missing point clouds, is not affected by the point clouds of the tunnel inner and outer liner appendages, is more sensitive in the local deformation feedback and can be applied to a variety of tunnel shapes. The results indicate that our method maximally improves the accuracy of the horizontal convergence calculation by 28.6 mm and the accuracy of the vault settlement by 27.8 mm in comparison with the least squares circle fitting algorithm.</description><subject>3D laser scanning technology</subject><subject>Algorithms</subject><subject>Alignment</subject><subject>Appendages</subject><subject>B-spline fitting</subject><subject>Convergence</subject><subject>convergent deformation</subject><subject>Data processing</subject><subject>Deformation</subject><subject>Deformation analysis</subject><subject>high-precision tunnel modelling</subject><subject>ICP alignment</subject><subject>Innovations</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Measurement methods</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Monitoring methods</subject><subject>Nearest-neighbor</subject><subject>Parameter estimation</subject><subject>Scanning devices</subject><subject>Tunneling shields</subject><subject>Wavelet transforms</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV9rHCEUxYfQQkKal3wCoW-FSa86jvo43TbNQkoLSZ7F8c_EZVanOhvIt6_Jhrb64OVw_HG4p2kuMVxRKuFzLpgRzDAmJ80ZAU7ajkjy7r_5tLkoZQf1UIoldGfNMqAfbn1MFvmU0SbFJ5cnF1f01VVhr9eQIhqinp9LKCh5pNHdY3CzRfeHGN2MttGkvKRcnXFCX9q7ZQ7Roeuwvgo6WrTd_ELDHKa4r-APzXuv5-Iu3t7z5uH62_3mpr39-X27GW5bQ3u6tiMH6xmMxGkjOO6FsHTkrOtBeutMx8FQy8hIYJSMgTSSct0DZxwYUNPR82Z75Nqkd2rJYa_zs0o6qFch5UnpvAYzOyUcF1h7TzDVndd07HsGnbQgXSfAicr6eGQtOf0-uLKqXTrkupSiiBCC1gAUV9fV0TXpCg3RpzVrU691-2BSdD5UfeCcMMoEfon46fjB5FRKdv5vTAzqpVH1r1H6B4tgkIs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Wang, Zihan</creator><creator>Xu, Xiangyang</creator><creator>He, Xuhui</creator><creator>Wei, Xiaojun</creator><creator>Yang, Hao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid><orcidid>https://orcid.org/0000-0001-9346-0943</orcidid><orcidid>https://orcid.org/0000-0003-2746-182X</orcidid></search><sort><creationdate>20231101</creationdate><title>A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment</title><author>Wang, Zihan ; Xu, Xiangyang ; He, Xuhui ; Wei, Xiaojun ; Yang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D laser scanning technology</topic><topic>Algorithms</topic><topic>Alignment</topic><topic>Appendages</topic><topic>B-spline fitting</topic><topic>Convergence</topic><topic>convergent deformation</topic><topic>Data processing</topic><topic>Deformation</topic><topic>Deformation analysis</topic><topic>high-precision tunnel modelling</topic><topic>ICP alignment</topic><topic>Innovations</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Measurement methods</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Monitoring methods</topic><topic>Nearest-neighbor</topic><topic>Parameter estimation</topic><topic>Scanning devices</topic><topic>Tunneling shields</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zihan</creatorcontrib><creatorcontrib>Xu, Xiangyang</creatorcontrib><creatorcontrib>He, Xuhui</creatorcontrib><creatorcontrib>Wei, Xiaojun</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zihan</au><au>Xu, Xiangyang</au><au>He, Xuhui</au><au>Wei, Xiaojun</au><au>Yang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>21</issue><spage>5112</spage><pages>5112-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The application of three-dimensional laser scanning technology in the field of tunnel deformation monitoring has changed the traditional measurement method. It provides an automated and intelligent solution for monitoring the geometric deformation of tunnel sections due to its high efficiency and independence from environmental influences. In this paper, based on B-spline fitting and iterative nearest point (ICP) alignment, the calculation of the difference between the radial distance and the design radius of a tunnel is transformed into a curve transformation that iterates over the nearest-neighbor points and calculates the difference in the distance between the corresponding points. The innovation of this paper is that the high-precision tunnel deformation monitoring method integrating B-spline fitting and ICP alignment can automatically compensate for the missing point clouds, is not affected by the point clouds of the tunnel inner and outer liner appendages, is more sensitive in the local deformation feedback and can be applied to a variety of tunnel shapes. The results indicate that our method maximally improves the accuracy of the horizontal convergence calculation by 28.6 mm and the accuracy of the vault settlement by 27.8 mm in comparison with the least squares circle fitting algorithm.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/rs15215112</doi><orcidid>https://orcid.org/0000-0001-7883-9808</orcidid><orcidid>https://orcid.org/0000-0001-9346-0943</orcidid><orcidid>https://orcid.org/0000-0003-2746-182X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2023-11, Vol.15 (21), p.5112
issn 2072-4292
2072-4292
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8e781aff213a4fa3b665049d09e480e8
source Publicly Available Content (ProQuest)
subjects 3D laser scanning technology
Algorithms
Alignment
Appendages
B-spline fitting
Convergence
convergent deformation
Data processing
Deformation
Deformation analysis
high-precision tunnel modelling
ICP alignment
Innovations
Lasers
Mathematical analysis
Measurement methods
Methods
Monitoring
Monitoring methods
Nearest-neighbor
Parameter estimation
Scanning devices
Tunneling shields
Wavelet transforms
title A Method for Convergent Deformation Analysis of a Shield Tunnel Incorporating B-Spline Fitting and ICP Alignment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T11%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Convergent%20Deformation%20Analysis%20of%20a%20Shield%20Tunnel%20Incorporating%20B-Spline%20Fitting%20and%20ICP%20Alignment&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Wang,%20Zihan&rft.date=2023-11-01&rft.volume=15&rft.issue=21&rft.spage=5112&rft.pages=5112-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs15215112&rft_dat=%3Cgale_doaj_%3EA772535814%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-b70df50b2eac871688d3b754609fdec470c3d52b20b95509c937a607570503c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888355031&rft_id=info:pmid/&rft_galeid=A772535814&rfr_iscdi=true