Loading…
Numerical approach to predict the flexural damage behavior of pervious concrete
This paper aims to develop a new numerical model to evaluate the flexural damage behavior of pervious concrete from its compositions. By considering this material within the framework of the quasi elasto-brittle approach, failure is modeled by the phase field method. Then, a taking-placing generatio...
Saved in:
Published in: | Case Studies in Construction Materials 2022-06, Vol.16, p.e00946, Article e00946 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper aims to develop a new numerical model to evaluate the flexural damage behavior of pervious concrete from its compositions. By considering this material within the framework of the quasi elasto-brittle approach, failure is modeled by the phase field method. Then, a taking-placing generation process of the extensive Monte Carlo simulation-type was constructed to account for the statistical effect of the pervious concrete structure. Various numerical investigations have been performed using this model. First, the modeling parameters were calibrated with the three-point bending test, then numerical-experimental correlations were well captured for both elastic and post softening regimes for the different structure sizes. Archived crack pattern analyses were used to examine the influence of the pore structure on certain values of peak load. Finally, the linear relationship between the flexural strength and the porosity was confirmed by agreement with the simulation results, which comprised of empirical references. |
---|---|
ISSN: | 2214-5095 2214-5095 |
DOI: | 10.1016/j.cscm.2022.e00946 |