Loading…
Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams
Charged particle beams driven to ultra-high dose rates (UHDRs) have been shown to offer potential benefits for future clinical applications, particularly in the reduction of normal-tissue toxicity. Studies of the so-called FLASH effect have shown promise, generating huge interest in high dose rate r...
Saved in:
Published in: | Applied sciences 2023-11, Vol.13 (21), p.11894 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c406t-3c3e06d01a2cfcf883860842d29571cac5cde533d63ea2462394f583a8a61a2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c406t-3c3e06d01a2cfcf883860842d29571cac5cde533d63ea2462394f583a8a61a2b3 |
container_end_page | |
container_issue | 21 |
container_start_page | 11894 |
container_title | Applied sciences |
container_volume | 13 |
creator | McCallum, Sean Lee, Nigel Milluzzo, Giuliana McIlvenny, Aodhan Borghesi, Marco Subiel, Anna Romano, Francesco |
description | Charged particle beams driven to ultra-high dose rates (UHDRs) have been shown to offer potential benefits for future clinical applications, particularly in the reduction of normal-tissue toxicity. Studies of the so-called FLASH effect have shown promise, generating huge interest in high dose rate radiation studies. With laser-driven proton beams, where the duration of the proton burst delivered to a sample can be as short as hundreds of picoseconds, the instantaneous dose rates are several orders of magnitude higher than those used for conventional radiotherapy. The dosimetry of these beam modalities is not trivial, with conventional active detectors, such as ionisation chambers, experiencing saturation effects making them unusable at the extremely high dose rates. Calorimeters, measuring the radiation-induced temperature rise in an absorber, offer an ideal candidate for the dosimetry of UHDR beams. However, their application in the measurement of laser-driven UHDR beams has so far not been trialled, and their effective suitability to work with the quasi-instantaneous and inhomogeneous dose deposition patterns and the harsh environment of a laser-plasma experiment has not been tested. The measurement of the absorbed dose of laser-driven proton beams was conducted in a first-of-its-kind investigation, employing the VULCAN-PW laser system of the Central Laser Facility (CLF) at the Rutherford Appleton Laboratory (RAL), using a small-body portable graphite calorimeter (SPGC) developed at the National Physical Laboratory (NPL) and radiochromic films. A small number of shots were recorded, with the corresponding absorbed dose measurements resulting from the induced temperature rise. The effect of the electromagnetic pulse (EMP) generated during laser–target interaction was assessed on the system, showing no significant effects on the derived signal-to-noise ratio. These proof-of-principle tests highlight the ability of calorimetry techniques to measure the absorbed dose for laser-driven proton beams. |
doi_str_mv | 10.3390/app132111894 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8eac82d6cf1e4d669e6f7b82cf1dea8e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772531330</galeid><doaj_id>oai_doaj_org_article_8eac82d6cf1e4d669e6f7b82cf1dea8e</doaj_id><sourcerecordid>A772531330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-3c3e06d01a2cfcf883860842d29571cac5cde533d63ea2462394f583a8a61a2b3</originalsourceid><addsrcrecordid>eNpNUcFq3DAQNaGFhDS3fICg1zqVNLYsH7ebpg0sdA_NWYyl0UaL13Ilb0v-vtpsKRkEM8y89-ahqapbwe8Aev4Z51mAFELovrmoriTvVA2N6N69qS-rm5z3vEQvQAt-VeVtitHX5W1TmGyYR2LRs9WQ43hciN3HHA60pBf2lMO0Yzi9ztJA7jQjto1pwaGw1jjGdMJSYn_C8sw2mCnV9yn8pomVNUuc2BfCQ_5Qvfc4Zrr5l6-rp4evP9ff682Pb4_r1aa2DVdLDRaIK8cFSuut1xq04rqRTvZtJyza1jpqAZwCQtkoCX3jWw2oURXOANfV41nXRdybuZjD9GIiBvPaiGlnMC3BjmQ0odXSKesFNU6pnpTvBl0WC0eoqWh9PGvNKf46Ul7MPh7TVOwbqbUu365EX1B3Z9QOi2iYfFwSFqfo6BBsnMiH0l91nWxBAPBC-HQm2BRzTuT_2xTcnM5q3p4V_gL5ZpVC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888111619</pqid></control><display><type>article</type><title>Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams</title><source>Publicly Available Content Database</source><creator>McCallum, Sean ; Lee, Nigel ; Milluzzo, Giuliana ; McIlvenny, Aodhan ; Borghesi, Marco ; Subiel, Anna ; Romano, Francesco</creator><creatorcontrib>McCallum, Sean ; Lee, Nigel ; Milluzzo, Giuliana ; McIlvenny, Aodhan ; Borghesi, Marco ; Subiel, Anna ; Romano, Francesco</creatorcontrib><description>Charged particle beams driven to ultra-high dose rates (UHDRs) have been shown to offer potential benefits for future clinical applications, particularly in the reduction of normal-tissue toxicity. Studies of the so-called FLASH effect have shown promise, generating huge interest in high dose rate radiation studies. With laser-driven proton beams, where the duration of the proton burst delivered to a sample can be as short as hundreds of picoseconds, the instantaneous dose rates are several orders of magnitude higher than those used for conventional radiotherapy. The dosimetry of these beam modalities is not trivial, with conventional active detectors, such as ionisation chambers, experiencing saturation effects making them unusable at the extremely high dose rates. Calorimeters, measuring the radiation-induced temperature rise in an absorber, offer an ideal candidate for the dosimetry of UHDR beams. However, their application in the measurement of laser-driven UHDR beams has so far not been trialled, and their effective suitability to work with the quasi-instantaneous and inhomogeneous dose deposition patterns and the harsh environment of a laser-plasma experiment has not been tested. The measurement of the absorbed dose of laser-driven proton beams was conducted in a first-of-its-kind investigation, employing the VULCAN-PW laser system of the Central Laser Facility (CLF) at the Rutherford Appleton Laboratory (RAL), using a small-body portable graphite calorimeter (SPGC) developed at the National Physical Laboratory (NPL) and radiochromic films. A small number of shots were recorded, with the corresponding absorbed dose measurements resulting from the induced temperature rise. The effect of the electromagnetic pulse (EMP) generated during laser–target interaction was assessed on the system, showing no significant effects on the derived signal-to-noise ratio. These proof-of-principle tests highlight the ability of calorimetry techniques to measure the absorbed dose for laser-driven proton beams.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app132111894</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>calorimetry ; Dosimetry ; Energy ; Graphite ; Heat ; Investigations ; laser-driven acceleration ; Lasers ; Radiation ; radiation dosimetry ; Radiation therapy ; Sensors ; Technology application</subject><ispartof>Applied sciences, 2023-11, Vol.13 (21), p.11894</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-3c3e06d01a2cfcf883860842d29571cac5cde533d63ea2462394f583a8a61a2b3</citedby><cites>FETCH-LOGICAL-c406t-3c3e06d01a2cfcf883860842d29571cac5cde533d63ea2462394f583a8a61a2b3</cites><orcidid>0000-0002-1044-1534 ; 0000-0002-3467-4631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888111619/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888111619?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>McCallum, Sean</creatorcontrib><creatorcontrib>Lee, Nigel</creatorcontrib><creatorcontrib>Milluzzo, Giuliana</creatorcontrib><creatorcontrib>McIlvenny, Aodhan</creatorcontrib><creatorcontrib>Borghesi, Marco</creatorcontrib><creatorcontrib>Subiel, Anna</creatorcontrib><creatorcontrib>Romano, Francesco</creatorcontrib><title>Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams</title><title>Applied sciences</title><description>Charged particle beams driven to ultra-high dose rates (UHDRs) have been shown to offer potential benefits for future clinical applications, particularly in the reduction of normal-tissue toxicity. Studies of the so-called FLASH effect have shown promise, generating huge interest in high dose rate radiation studies. With laser-driven proton beams, where the duration of the proton burst delivered to a sample can be as short as hundreds of picoseconds, the instantaneous dose rates are several orders of magnitude higher than those used for conventional radiotherapy. The dosimetry of these beam modalities is not trivial, with conventional active detectors, such as ionisation chambers, experiencing saturation effects making them unusable at the extremely high dose rates. Calorimeters, measuring the radiation-induced temperature rise in an absorber, offer an ideal candidate for the dosimetry of UHDR beams. However, their application in the measurement of laser-driven UHDR beams has so far not been trialled, and their effective suitability to work with the quasi-instantaneous and inhomogeneous dose deposition patterns and the harsh environment of a laser-plasma experiment has not been tested. The measurement of the absorbed dose of laser-driven proton beams was conducted in a first-of-its-kind investigation, employing the VULCAN-PW laser system of the Central Laser Facility (CLF) at the Rutherford Appleton Laboratory (RAL), using a small-body portable graphite calorimeter (SPGC) developed at the National Physical Laboratory (NPL) and radiochromic films. A small number of shots were recorded, with the corresponding absorbed dose measurements resulting from the induced temperature rise. The effect of the electromagnetic pulse (EMP) generated during laser–target interaction was assessed on the system, showing no significant effects on the derived signal-to-noise ratio. These proof-of-principle tests highlight the ability of calorimetry techniques to measure the absorbed dose for laser-driven proton beams.</description><subject>calorimetry</subject><subject>Dosimetry</subject><subject>Energy</subject><subject>Graphite</subject><subject>Heat</subject><subject>Investigations</subject><subject>laser-driven acceleration</subject><subject>Lasers</subject><subject>Radiation</subject><subject>radiation dosimetry</subject><subject>Radiation therapy</subject><subject>Sensors</subject><subject>Technology application</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFq3DAQNaGFhDS3fICg1zqVNLYsH7ebpg0sdA_NWYyl0UaL13Ilb0v-vtpsKRkEM8y89-ahqapbwe8Aev4Z51mAFELovrmoriTvVA2N6N69qS-rm5z3vEQvQAt-VeVtitHX5W1TmGyYR2LRs9WQ43hciN3HHA60pBf2lMO0Yzi9ztJA7jQjto1pwaGw1jjGdMJSYn_C8sw2mCnV9yn8pomVNUuc2BfCQ_5Qvfc4Zrr5l6-rp4evP9ff682Pb4_r1aa2DVdLDRaIK8cFSuut1xq04rqRTvZtJyza1jpqAZwCQtkoCX3jWw2oURXOANfV41nXRdybuZjD9GIiBvPaiGlnMC3BjmQ0odXSKesFNU6pnpTvBl0WC0eoqWh9PGvNKf46Ul7MPh7TVOwbqbUu365EX1B3Z9QOi2iYfFwSFqfo6BBsnMiH0l91nWxBAPBC-HQm2BRzTuT_2xTcnM5q3p4V_gL5ZpVC</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>McCallum, Sean</creator><creator>Lee, Nigel</creator><creator>Milluzzo, Giuliana</creator><creator>McIlvenny, Aodhan</creator><creator>Borghesi, Marco</creator><creator>Subiel, Anna</creator><creator>Romano, Francesco</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1044-1534</orcidid><orcidid>https://orcid.org/0000-0002-3467-4631</orcidid></search><sort><creationdate>20231101</creationdate><title>Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams</title><author>McCallum, Sean ; Lee, Nigel ; Milluzzo, Giuliana ; McIlvenny, Aodhan ; Borghesi, Marco ; Subiel, Anna ; Romano, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-3c3e06d01a2cfcf883860842d29571cac5cde533d63ea2462394f583a8a61a2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>calorimetry</topic><topic>Dosimetry</topic><topic>Energy</topic><topic>Graphite</topic><topic>Heat</topic><topic>Investigations</topic><topic>laser-driven acceleration</topic><topic>Lasers</topic><topic>Radiation</topic><topic>radiation dosimetry</topic><topic>Radiation therapy</topic><topic>Sensors</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCallum, Sean</creatorcontrib><creatorcontrib>Lee, Nigel</creatorcontrib><creatorcontrib>Milluzzo, Giuliana</creatorcontrib><creatorcontrib>McIlvenny, Aodhan</creatorcontrib><creatorcontrib>Borghesi, Marco</creatorcontrib><creatorcontrib>Subiel, Anna</creatorcontrib><creatorcontrib>Romano, Francesco</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCallum, Sean</au><au>Lee, Nigel</au><au>Milluzzo, Giuliana</au><au>McIlvenny, Aodhan</au><au>Borghesi, Marco</au><au>Subiel, Anna</au><au>Romano, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams</atitle><jtitle>Applied sciences</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>13</volume><issue>21</issue><spage>11894</spage><pages>11894-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Charged particle beams driven to ultra-high dose rates (UHDRs) have been shown to offer potential benefits for future clinical applications, particularly in the reduction of normal-tissue toxicity. Studies of the so-called FLASH effect have shown promise, generating huge interest in high dose rate radiation studies. With laser-driven proton beams, where the duration of the proton burst delivered to a sample can be as short as hundreds of picoseconds, the instantaneous dose rates are several orders of magnitude higher than those used for conventional radiotherapy. The dosimetry of these beam modalities is not trivial, with conventional active detectors, such as ionisation chambers, experiencing saturation effects making them unusable at the extremely high dose rates. Calorimeters, measuring the radiation-induced temperature rise in an absorber, offer an ideal candidate for the dosimetry of UHDR beams. However, their application in the measurement of laser-driven UHDR beams has so far not been trialled, and their effective suitability to work with the quasi-instantaneous and inhomogeneous dose deposition patterns and the harsh environment of a laser-plasma experiment has not been tested. The measurement of the absorbed dose of laser-driven proton beams was conducted in a first-of-its-kind investigation, employing the VULCAN-PW laser system of the Central Laser Facility (CLF) at the Rutherford Appleton Laboratory (RAL), using a small-body portable graphite calorimeter (SPGC) developed at the National Physical Laboratory (NPL) and radiochromic films. A small number of shots were recorded, with the corresponding absorbed dose measurements resulting from the induced temperature rise. The effect of the electromagnetic pulse (EMP) generated during laser–target interaction was assessed on the system, showing no significant effects on the derived signal-to-noise ratio. These proof-of-principle tests highlight the ability of calorimetry techniques to measure the absorbed dose for laser-driven proton beams.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app132111894</doi><orcidid>https://orcid.org/0000-0002-1044-1534</orcidid><orcidid>https://orcid.org/0000-0002-3467-4631</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2023-11, Vol.13 (21), p.11894 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8eac82d6cf1e4d669e6f7b82cf1dea8e |
source | Publicly Available Content Database |
subjects | calorimetry Dosimetry Energy Graphite Heat Investigations laser-driven acceleration Lasers Radiation radiation dosimetry Radiation therapy Sensors Technology application |
title | Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proof-of-Principle%20of%20Absolute%20Dosimetry%20Using%20an%20Absorbed%20Dose%20Portable%20Calorimeter%20with%20Laser-Driven%20Proton%20Beams&rft.jtitle=Applied%20sciences&rft.au=McCallum,%20Sean&rft.date=2023-11-01&rft.volume=13&rft.issue=21&rft.spage=11894&rft.pages=11894-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app132111894&rft_dat=%3Cgale_doaj_%3EA772531330%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-3c3e06d01a2cfcf883860842d29571cac5cde533d63ea2462394f583a8a61a2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888111619&rft_id=info:pmid/&rft_galeid=A772531330&rfr_iscdi=true |