Loading…
Strongly coupled magnon–phonon dynamics in a single nanomagnet
Polaritons are widely investigated quasiparticles with fundamental and technological significance due to their unique properties. They have been studied most extensively in semiconductors when photons interact with various elementary excitations. However, other strongly coupled excitations demonstra...
Saved in:
Published in: | Nature communications 2019-06, Vol.10 (1), p.2652-6, Article 2652 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polaritons are widely investigated quasiparticles with fundamental and technological significance due to their unique properties. They have been studied most extensively in semiconductors when photons interact with various elementary excitations. However, other strongly coupled excitations demonstrate similar dynamics. Specifically, when magnon and phonon modes are coupled, a hybridized magnon–phonon quasiparticle can form. Here, we report on the direct observation of coupled magnon–phonon dynamics within a single thin nickel nanomagnet. We develop an analytic description to model the dynamics in two dimensions, enabling us to isolate the parameters influencing the frequency splitting. Furthermore, we demonstrate tuning of the magnon–phonon interaction into the strong coupling regime via the orientation of the applied magnetic field.
Exploring the magnon and phonon coupling may enable high efficiency magnonic applications. Here the authors show the observation, understanding and control of the magnon–phonon interaction by studying the magneto-acoustic resonance modes of a single thin-film Ni nanomagnet. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-019-10545-x |