Loading…
Efficient estimation of population variance of a sensitive variable using a new scrambling response model
This study introduces a pioneering scrambling response model tailored for handling sensitive variables. Subsequently, a generalized estimator for variance estimation, relying on two auxiliary information sources, is developed following this novel model. Analytical expressions for bias, mean square e...
Saved in:
Published in: | Scientific reports 2023-11, Vol.13 (1), p.19913-19913, Article 19913 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-fa075ba5f4d80e8e957b2b21968e0fef7331e225435ae390f73aab5462b490433 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-fa075ba5f4d80e8e957b2b21968e0fef7331e225435ae390f73aab5462b490433 |
container_end_page | 19913 |
container_issue | 1 |
container_start_page | 19913 |
container_title | Scientific reports |
container_volume | 13 |
creator | Saleem, Iram Sanaullah, Aamir Al-Essa, Laila A. Bashir, Shakila Al Mutairi, Aned |
description | This study introduces a pioneering scrambling response model tailored for handling sensitive variables. Subsequently, a generalized estimator for variance estimation, relying on two auxiliary information sources, is developed following this novel model. Analytical expressions for bias, mean square error, and minimum mean square error are meticulously derived up to the first order of approximation, shedding light on the estimator’s statistical performance. Comprehensive simulation experiments and empirical analysis unveil compelling results. The proposed generalized estimator, operating under both scrambling response models, consistently exhibits minimal mean square error, surpassing existing estimation techniques. Furthermore, this study evaluates the level of privacy protection afforded to respondents using this model, employing a robust framework of simulations and empirical studies. |
doi_str_mv | 10.1038/s41598-023-45427-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ecc68b52df847f99cf59ad2430ac507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8ecc68b52df847f99cf59ad2430ac507</doaj_id><sourcerecordid>2890361584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-fa075ba5f4d80e8e957b2b21968e0fef7331e225435ae390f73aab5462b490433</originalsourceid><addsrcrecordid>eNp9kUFPHSEUhSeNJjXqH3A1iZtuRpkLvIGlMbaamLjRNbnDXF54mQcjzNj035fnGNt0UTbA4TsnwKmqi5ZdtYyr6yxaqVXDgDdCCuga-FKdABOyAQ5w9Nf6a3We846VIUGLVp9U_s45bz2FuaY8-z3OPoY6unqK0zKuuzdMHoOlg4x1ppD97N9o1fuR6iX7sC1HgX7W2Sbc9-NBSJSnGDLV-zjQeFYdOxwznX_Mp9XL97vn2_vm8enHw-3NY2PFBubGIetkj9KJQTFSpGXXQw-t3ihijlzHeUsAUnCJxDUrAmIvi7cXmgnOT6uHNXeIuDNTKm9Kv0xEb96FmLYG0-ztSEaRtRvVSxicEp3T2jqpcQDBGVrJupL1bc2aUnxdygeZvc-WxhEDxSUbUJrxTSuVKOjlP-guLimUlxZKacWY0lAoWCmbYs6J3OcFW2YOZZq1TFPKNO9lmoOJr6Zc4LCl9Cf6P67fnUGh4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889800892</pqid></control><display><type>article</type><title>Efficient estimation of population variance of a sensitive variable using a new scrambling response model</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Saleem, Iram ; Sanaullah, Aamir ; Al-Essa, Laila A. ; Bashir, Shakila ; Al Mutairi, Aned</creator><creatorcontrib>Saleem, Iram ; Sanaullah, Aamir ; Al-Essa, Laila A. ; Bashir, Shakila ; Al Mutairi, Aned</creatorcontrib><description>This study introduces a pioneering scrambling response model tailored for handling sensitive variables. Subsequently, a generalized estimator for variance estimation, relying on two auxiliary information sources, is developed following this novel model. Analytical expressions for bias, mean square error, and minimum mean square error are meticulously derived up to the first order of approximation, shedding light on the estimator’s statistical performance. Comprehensive simulation experiments and empirical analysis unveil compelling results. The proposed generalized estimator, operating under both scrambling response models, consistently exhibits minimal mean square error, surpassing existing estimation techniques. Furthermore, this study evaluates the level of privacy protection afforded to respondents using this model, employing a robust framework of simulations and empirical studies.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-45427-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1041 ; 639/705/1042 ; 639/705/1046 ; 639/705/531 ; Approximation ; Bias ; Humanities and Social Sciences ; Mean square errors ; multidisciplinary ; Privacy ; Science ; Science (multidisciplinary) ; Simulation ; Variables</subject><ispartof>Scientific reports, 2023-11, Vol.13 (1), p.19913-19913, Article 19913</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-fa075ba5f4d80e8e957b2b21968e0fef7331e225435ae390f73aab5462b490433</citedby><cites>FETCH-LOGICAL-c462t-fa075ba5f4d80e8e957b2b21968e0fef7331e225435ae390f73aab5462b490433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2889800892/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2889800892?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,37012,44589,74897</link.rule.ids></links><search><creatorcontrib>Saleem, Iram</creatorcontrib><creatorcontrib>Sanaullah, Aamir</creatorcontrib><creatorcontrib>Al-Essa, Laila A.</creatorcontrib><creatorcontrib>Bashir, Shakila</creatorcontrib><creatorcontrib>Al Mutairi, Aned</creatorcontrib><title>Efficient estimation of population variance of a sensitive variable using a new scrambling response model</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>This study introduces a pioneering scrambling response model tailored for handling sensitive variables. Subsequently, a generalized estimator for variance estimation, relying on two auxiliary information sources, is developed following this novel model. Analytical expressions for bias, mean square error, and minimum mean square error are meticulously derived up to the first order of approximation, shedding light on the estimator’s statistical performance. Comprehensive simulation experiments and empirical analysis unveil compelling results. The proposed generalized estimator, operating under both scrambling response models, consistently exhibits minimal mean square error, surpassing existing estimation techniques. Furthermore, this study evaluates the level of privacy protection afforded to respondents using this model, employing a robust framework of simulations and empirical studies.</description><subject>639/705/1041</subject><subject>639/705/1042</subject><subject>639/705/1046</subject><subject>639/705/531</subject><subject>Approximation</subject><subject>Bias</subject><subject>Humanities and Social Sciences</subject><subject>Mean square errors</subject><subject>multidisciplinary</subject><subject>Privacy</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Variables</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUFPHSEUhSeNJjXqH3A1iZtuRpkLvIGlMbaamLjRNbnDXF54mQcjzNj035fnGNt0UTbA4TsnwKmqi5ZdtYyr6yxaqVXDgDdCCuga-FKdABOyAQ5w9Nf6a3We846VIUGLVp9U_s45bz2FuaY8-z3OPoY6unqK0zKuuzdMHoOlg4x1ppD97N9o1fuR6iX7sC1HgX7W2Sbc9-NBSJSnGDLV-zjQeFYdOxwznX_Mp9XL97vn2_vm8enHw-3NY2PFBubGIetkj9KJQTFSpGXXQw-t3ihijlzHeUsAUnCJxDUrAmIvi7cXmgnOT6uHNXeIuDNTKm9Kv0xEb96FmLYG0-ztSEaRtRvVSxicEp3T2jqpcQDBGVrJupL1bc2aUnxdygeZvc-WxhEDxSUbUJrxTSuVKOjlP-guLimUlxZKacWY0lAoWCmbYs6J3OcFW2YOZZq1TFPKNO9lmoOJr6Zc4LCl9Cf6P67fnUGh4g</recordid><startdate>20231114</startdate><enddate>20231114</enddate><creator>Saleem, Iram</creator><creator>Sanaullah, Aamir</creator><creator>Al-Essa, Laila A.</creator><creator>Bashir, Shakila</creator><creator>Al Mutairi, Aned</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20231114</creationdate><title>Efficient estimation of population variance of a sensitive variable using a new scrambling response model</title><author>Saleem, Iram ; Sanaullah, Aamir ; Al-Essa, Laila A. ; Bashir, Shakila ; Al Mutairi, Aned</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-fa075ba5f4d80e8e957b2b21968e0fef7331e225435ae390f73aab5462b490433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/705/1041</topic><topic>639/705/1042</topic><topic>639/705/1046</topic><topic>639/705/531</topic><topic>Approximation</topic><topic>Bias</topic><topic>Humanities and Social Sciences</topic><topic>Mean square errors</topic><topic>multidisciplinary</topic><topic>Privacy</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, Iram</creatorcontrib><creatorcontrib>Sanaullah, Aamir</creatorcontrib><creatorcontrib>Al-Essa, Laila A.</creatorcontrib><creatorcontrib>Bashir, Shakila</creatorcontrib><creatorcontrib>Al Mutairi, Aned</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, Iram</au><au>Sanaullah, Aamir</au><au>Al-Essa, Laila A.</au><au>Bashir, Shakila</au><au>Al Mutairi, Aned</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient estimation of population variance of a sensitive variable using a new scrambling response model</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2023-11-14</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>19913</spage><epage>19913</epage><pages>19913-19913</pages><artnum>19913</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This study introduces a pioneering scrambling response model tailored for handling sensitive variables. Subsequently, a generalized estimator for variance estimation, relying on two auxiliary information sources, is developed following this novel model. Analytical expressions for bias, mean square error, and minimum mean square error are meticulously derived up to the first order of approximation, shedding light on the estimator’s statistical performance. Comprehensive simulation experiments and empirical analysis unveil compelling results. The proposed generalized estimator, operating under both scrambling response models, consistently exhibits minimal mean square error, surpassing existing estimation techniques. Furthermore, this study evaluates the level of privacy protection afforded to respondents using this model, employing a robust framework of simulations and empirical studies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41598-023-45427-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-11, Vol.13 (1), p.19913-19913, Article 19913 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8ecc68b52df847f99cf59ad2430ac507 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/1041 639/705/1042 639/705/1046 639/705/531 Approximation Bias Humanities and Social Sciences Mean square errors multidisciplinary Privacy Science Science (multidisciplinary) Simulation Variables |
title | Efficient estimation of population variance of a sensitive variable using a new scrambling response model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20estimation%20of%20population%20variance%20of%20a%20sensitive%20variable%20using%20a%20new%20scrambling%20response%20model&rft.jtitle=Scientific%20reports&rft.au=Saleem,%20Iram&rft.date=2023-11-14&rft.volume=13&rft.issue=1&rft.spage=19913&rft.epage=19913&rft.pages=19913-19913&rft.artnum=19913&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-45427-2&rft_dat=%3Cproquest_doaj_%3E2890361584%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-fa075ba5f4d80e8e957b2b21968e0fef7331e225435ae390f73aab5462b490433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889800892&rft_id=info:pmid/&rfr_iscdi=true |