Loading…
Densification of ultra-refractory transition metal diboride ceramics
The densification behavior of transition metal diboride compounds was reviewed with emphasis on ZrB2 and HfB2. These compounds are considered ultra-high temperature ceramics because they have melting temperatures above 3000?C. Densification of transition metal diborides is difficult due to their str...
Saved in:
Published in: | Science of sintering 2020, Vol.52 (1), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3 |
---|---|
cites | |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 1 |
container_title | Science of sintering |
container_volume | 52 |
creator | Fahrenholtz, W.G. Hilmas, G.E. Li, Ruixing |
description | The densification behavior of transition metal diboride compounds was
reviewed with emphasis on ZrB2 and HfB2. These compounds are considered
ultra-high temperature ceramics because they have melting temperatures above
3000?C. Densification of transition metal diborides is difficult due to
their strong covalent bonding, which results in extremely high melting
temperatures and low self-diffusion coefficients. In addition, oxide
impurities present on the surface of powder particles promotes coarsening,
which further inhibits densification. Studies prior to the 1990s
predominantly used hot pressing for densification. Those reports revealed
densification mechanisms and identified that oxygen impurity contents below
about 0.5 wt% were required for effective densification. Subsequent studies
have employed advanced sintering methods such as spark plasma sintering and
reactive hot pressing to produce materials with nearly full density and
higher metallic purity. Further studies are needed to identify fundamental
densification mechanisms and further improve the elevated temperature
properties of transition metal diborides.
nema |
doi_str_mv | 10.2298/SOS2001001F |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ed2d4ecbd0f4a53a79310cc32b445fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8ed2d4ecbd0f4a53a79310cc32b445fb</doaj_id><sourcerecordid>2412996021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqT35BxY8yurkY5PNUVqrhUIPVfAWsvmQlG1Tk-2h_97YiggDw5t5vDfzELrF8ECIbB_XqzUBwKXmF2iEWwK1YJheohHQBuqCP67RJOfQAUhoMGcwQrOZ2-Xgg9FDiLsq-urQD0nXyfmkzRDTsSqwUE7rrRt0X9nQxRSsq4xLehtMvkFXXvfZTX77GL3Pn9-mr_Vy9bKYPi1rQzkb6q6VzHPrBPO4sYYIZqxzVBPuG6wNk6JgYrm1ojxkhOBSMs1BthSTDiwdo8VZ10a9UfsUtjodVdRBnQYxfSqdhmB6p1pniWXOdBY80w3VQlIMxlDSMdb4rmjdnbX2KX4dXB7UJh7SrpyvCMNESg4EF9b9mWVSzLmE8ueKQf2krv6lTr8BOD90ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412996021</pqid></control><display><type>article</type><title>Densification of ultra-refractory transition metal diboride ceramics</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Fahrenholtz, W.G. ; Hilmas, G.E. ; Li, Ruixing</creator><creatorcontrib>Fahrenholtz, W.G. ; Hilmas, G.E. ; Li, Ruixing</creatorcontrib><description>The densification behavior of transition metal diboride compounds was
reviewed with emphasis on ZrB2 and HfB2. These compounds are considered
ultra-high temperature ceramics because they have melting temperatures above
3000?C. Densification of transition metal diborides is difficult due to
their strong covalent bonding, which results in extremely high melting
temperatures and low self-diffusion coefficients. In addition, oxide
impurities present on the surface of powder particles promotes coarsening,
which further inhibits densification. Studies prior to the 1990s
predominantly used hot pressing for densification. Those reports revealed
densification mechanisms and identified that oxygen impurity contents below
about 0.5 wt% were required for effective densification. Subsequent studies
have employed advanced sintering methods such as spark plasma sintering and
reactive hot pressing to produce materials with nearly full density and
higher metallic purity. Further studies are needed to identify fundamental
densification mechanisms and further improve the elevated temperature
properties of transition metal diborides.
nema</description><identifier>ISSN: 0350-820X</identifier><identifier>EISSN: 1820-7413</identifier><identifier>DOI: 10.2298/SOS2001001F</identifier><language>eng</language><publisher>Beograd: International Institute for the Science of Sintering (IISS)</publisher><subject>Bonding strength ; Ceramics ; Densification ; Extreme values ; Grain boundaries ; Hafnium compounds ; High temperature ; Hot pressing ; Impurities ; Metals ; Particle size ; Plasma sintering ; Refractory materials ; Self diffusion ; sintering ; Spark plasma sintering ; Studies ; transition metal diborides ; Transition metals ; Ultrahigh temperature ; Zirconium compounds</subject><ispartof>Science of sintering, 2020, Vol.52 (1), p.1-14</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2412996021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2412996021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Fahrenholtz, W.G.</creatorcontrib><creatorcontrib>Hilmas, G.E.</creatorcontrib><creatorcontrib>Li, Ruixing</creatorcontrib><title>Densification of ultra-refractory transition metal diboride ceramics</title><title>Science of sintering</title><description>The densification behavior of transition metal diboride compounds was
reviewed with emphasis on ZrB2 and HfB2. These compounds are considered
ultra-high temperature ceramics because they have melting temperatures above
3000?C. Densification of transition metal diborides is difficult due to
their strong covalent bonding, which results in extremely high melting
temperatures and low self-diffusion coefficients. In addition, oxide
impurities present on the surface of powder particles promotes coarsening,
which further inhibits densification. Studies prior to the 1990s
predominantly used hot pressing for densification. Those reports revealed
densification mechanisms and identified that oxygen impurity contents below
about 0.5 wt% were required for effective densification. Subsequent studies
have employed advanced sintering methods such as spark plasma sintering and
reactive hot pressing to produce materials with nearly full density and
higher metallic purity. Further studies are needed to identify fundamental
densification mechanisms and further improve the elevated temperature
properties of transition metal diborides.
nema</description><subject>Bonding strength</subject><subject>Ceramics</subject><subject>Densification</subject><subject>Extreme values</subject><subject>Grain boundaries</subject><subject>Hafnium compounds</subject><subject>High temperature</subject><subject>Hot pressing</subject><subject>Impurities</subject><subject>Metals</subject><subject>Particle size</subject><subject>Plasma sintering</subject><subject>Refractory materials</subject><subject>Self diffusion</subject><subject>sintering</subject><subject>Spark plasma sintering</subject><subject>Studies</subject><subject>transition metal diborides</subject><subject>Transition metals</subject><subject>Ultrahigh temperature</subject><subject>Zirconium compounds</subject><issn>0350-820X</issn><issn>1820-7413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqT35BxY8yurkY5PNUVqrhUIPVfAWsvmQlG1Tk-2h_97YiggDw5t5vDfzELrF8ECIbB_XqzUBwKXmF2iEWwK1YJheohHQBuqCP67RJOfQAUhoMGcwQrOZ2-Xgg9FDiLsq-urQD0nXyfmkzRDTsSqwUE7rrRt0X9nQxRSsq4xLehtMvkFXXvfZTX77GL3Pn9-mr_Vy9bKYPi1rQzkb6q6VzHPrBPO4sYYIZqxzVBPuG6wNk6JgYrm1ojxkhOBSMs1BthSTDiwdo8VZ10a9UfsUtjodVdRBnQYxfSqdhmB6p1pniWXOdBY80w3VQlIMxlDSMdb4rmjdnbX2KX4dXB7UJh7SrpyvCMNESg4EF9b9mWVSzLmE8ueKQf2krv6lTr8BOD90ug</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fahrenholtz, W.G.</creator><creator>Hilmas, G.E.</creator><creator>Li, Ruixing</creator><general>International Institute for the Science of Sintering (IISS)</general><general>International Institute for the Science of Sintering, Beograd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Densification of ultra-refractory transition metal diboride ceramics</title><author>Fahrenholtz, W.G. ; Hilmas, G.E. ; Li, Ruixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding strength</topic><topic>Ceramics</topic><topic>Densification</topic><topic>Extreme values</topic><topic>Grain boundaries</topic><topic>Hafnium compounds</topic><topic>High temperature</topic><topic>Hot pressing</topic><topic>Impurities</topic><topic>Metals</topic><topic>Particle size</topic><topic>Plasma sintering</topic><topic>Refractory materials</topic><topic>Self diffusion</topic><topic>sintering</topic><topic>Spark plasma sintering</topic><topic>Studies</topic><topic>transition metal diborides</topic><topic>Transition metals</topic><topic>Ultrahigh temperature</topic><topic>Zirconium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahrenholtz, W.G.</creatorcontrib><creatorcontrib>Hilmas, G.E.</creatorcontrib><creatorcontrib>Li, Ruixing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Science of sintering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahrenholtz, W.G.</au><au>Hilmas, G.E.</au><au>Li, Ruixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densification of ultra-refractory transition metal diboride ceramics</atitle><jtitle>Science of sintering</jtitle><date>2020</date><risdate>2020</risdate><volume>52</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0350-820X</issn><eissn>1820-7413</eissn><abstract>The densification behavior of transition metal diboride compounds was
reviewed with emphasis on ZrB2 and HfB2. These compounds are considered
ultra-high temperature ceramics because they have melting temperatures above
3000?C. Densification of transition metal diborides is difficult due to
their strong covalent bonding, which results in extremely high melting
temperatures and low self-diffusion coefficients. In addition, oxide
impurities present on the surface of powder particles promotes coarsening,
which further inhibits densification. Studies prior to the 1990s
predominantly used hot pressing for densification. Those reports revealed
densification mechanisms and identified that oxygen impurity contents below
about 0.5 wt% were required for effective densification. Subsequent studies
have employed advanced sintering methods such as spark plasma sintering and
reactive hot pressing to produce materials with nearly full density and
higher metallic purity. Further studies are needed to identify fundamental
densification mechanisms and further improve the elevated temperature
properties of transition metal diborides.
nema</abstract><cop>Beograd</cop><pub>International Institute for the Science of Sintering (IISS)</pub><doi>10.2298/SOS2001001F</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0350-820X |
ispartof | Science of sintering, 2020, Vol.52 (1), p.1-14 |
issn | 0350-820X 1820-7413 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8ed2d4ecbd0f4a53a79310cc32b445fb |
source | Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | Bonding strength Ceramics Densification Extreme values Grain boundaries Hafnium compounds High temperature Hot pressing Impurities Metals Particle size Plasma sintering Refractory materials Self diffusion sintering Spark plasma sintering Studies transition metal diborides Transition metals Ultrahigh temperature Zirconium compounds |
title | Densification of ultra-refractory transition metal diboride ceramics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densification%20of%20ultra-refractory%20transition%20metal%20diboride%20ceramics&rft.jtitle=Science%20of%20sintering&rft.au=Fahrenholtz,%20W.G.&rft.date=2020&rft.volume=52&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0350-820X&rft.eissn=1820-7413&rft_id=info:doi/10.2298/SOS2001001F&rft_dat=%3Cproquest_doaj_%3E2412996021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412996021&rft_id=info:pmid/&rfr_iscdi=true |