Loading…

Densification of ultra-refractory transition metal diboride ceramics

The densification behavior of transition metal diboride compounds was reviewed with emphasis on ZrB2 and HfB2. These compounds are considered ultra-high temperature ceramics because they have melting temperatures above 3000?C. Densification of transition metal diborides is difficult due to their str...

Full description

Saved in:
Bibliographic Details
Published in:Science of sintering 2020, Vol.52 (1), p.1-14
Main Authors: Fahrenholtz, W.G., Hilmas, G.E., Li, Ruixing
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3
cites
container_end_page 14
container_issue 1
container_start_page 1
container_title Science of sintering
container_volume 52
creator Fahrenholtz, W.G.
Hilmas, G.E.
Li, Ruixing
description The densification behavior of transition metal diboride compounds was reviewed with emphasis on ZrB2 and HfB2. These compounds are considered ultra-high temperature ceramics because they have melting temperatures above 3000?C. Densification of transition metal diborides is difficult due to their strong covalent bonding, which results in extremely high melting temperatures and low self-diffusion coefficients. In addition, oxide impurities present on the surface of powder particles promotes coarsening, which further inhibits densification. Studies prior to the 1990s predominantly used hot pressing for densification. Those reports revealed densification mechanisms and identified that oxygen impurity contents below about 0.5 wt% were required for effective densification. Subsequent studies have employed advanced sintering methods such as spark plasma sintering and reactive hot pressing to produce materials with nearly full density and higher metallic purity. Further studies are needed to identify fundamental densification mechanisms and further improve the elevated temperature properties of transition metal diborides. nema
doi_str_mv 10.2298/SOS2001001F
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ed2d4ecbd0f4a53a79310cc32b445fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8ed2d4ecbd0f4a53a79310cc32b445fb</doaj_id><sourcerecordid>2412996021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqT35BxY8yurkY5PNUVqrhUIPVfAWsvmQlG1Tk-2h_97YiggDw5t5vDfzELrF8ECIbB_XqzUBwKXmF2iEWwK1YJheohHQBuqCP67RJOfQAUhoMGcwQrOZ2-Xgg9FDiLsq-urQD0nXyfmkzRDTsSqwUE7rrRt0X9nQxRSsq4xLehtMvkFXXvfZTX77GL3Pn9-mr_Vy9bKYPi1rQzkb6q6VzHPrBPO4sYYIZqxzVBPuG6wNk6JgYrm1ojxkhOBSMs1BthSTDiwdo8VZ10a9UfsUtjodVdRBnQYxfSqdhmB6p1pniWXOdBY80w3VQlIMxlDSMdb4rmjdnbX2KX4dXB7UJh7SrpyvCMNESg4EF9b9mWVSzLmE8ueKQf2krv6lTr8BOD90ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412996021</pqid></control><display><type>article</type><title>Densification of ultra-refractory transition metal diboride ceramics</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Fahrenholtz, W.G. ; Hilmas, G.E. ; Li, Ruixing</creator><creatorcontrib>Fahrenholtz, W.G. ; Hilmas, G.E. ; Li, Ruixing</creatorcontrib><description>The densification behavior of transition metal diboride compounds was reviewed with emphasis on ZrB2 and HfB2. These compounds are considered ultra-high temperature ceramics because they have melting temperatures above 3000?C. Densification of transition metal diborides is difficult due to their strong covalent bonding, which results in extremely high melting temperatures and low self-diffusion coefficients. In addition, oxide impurities present on the surface of powder particles promotes coarsening, which further inhibits densification. Studies prior to the 1990s predominantly used hot pressing for densification. Those reports revealed densification mechanisms and identified that oxygen impurity contents below about 0.5 wt% were required for effective densification. Subsequent studies have employed advanced sintering methods such as spark plasma sintering and reactive hot pressing to produce materials with nearly full density and higher metallic purity. Further studies are needed to identify fundamental densification mechanisms and further improve the elevated temperature properties of transition metal diborides. nema</description><identifier>ISSN: 0350-820X</identifier><identifier>EISSN: 1820-7413</identifier><identifier>DOI: 10.2298/SOS2001001F</identifier><language>eng</language><publisher>Beograd: International Institute for the Science of Sintering (IISS)</publisher><subject>Bonding strength ; Ceramics ; Densification ; Extreme values ; Grain boundaries ; Hafnium compounds ; High temperature ; Hot pressing ; Impurities ; Metals ; Particle size ; Plasma sintering ; Refractory materials ; Self diffusion ; sintering ; Spark plasma sintering ; Studies ; transition metal diborides ; Transition metals ; Ultrahigh temperature ; Zirconium compounds</subject><ispartof>Science of sintering, 2020, Vol.52 (1), p.1-14</ispartof><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2412996021/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2412996021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Fahrenholtz, W.G.</creatorcontrib><creatorcontrib>Hilmas, G.E.</creatorcontrib><creatorcontrib>Li, Ruixing</creatorcontrib><title>Densification of ultra-refractory transition metal diboride ceramics</title><title>Science of sintering</title><description>The densification behavior of transition metal diboride compounds was reviewed with emphasis on ZrB2 and HfB2. These compounds are considered ultra-high temperature ceramics because they have melting temperatures above 3000?C. Densification of transition metal diborides is difficult due to their strong covalent bonding, which results in extremely high melting temperatures and low self-diffusion coefficients. In addition, oxide impurities present on the surface of powder particles promotes coarsening, which further inhibits densification. Studies prior to the 1990s predominantly used hot pressing for densification. Those reports revealed densification mechanisms and identified that oxygen impurity contents below about 0.5 wt% were required for effective densification. Subsequent studies have employed advanced sintering methods such as spark plasma sintering and reactive hot pressing to produce materials with nearly full density and higher metallic purity. Further studies are needed to identify fundamental densification mechanisms and further improve the elevated temperature properties of transition metal diborides. nema</description><subject>Bonding strength</subject><subject>Ceramics</subject><subject>Densification</subject><subject>Extreme values</subject><subject>Grain boundaries</subject><subject>Hafnium compounds</subject><subject>High temperature</subject><subject>Hot pressing</subject><subject>Impurities</subject><subject>Metals</subject><subject>Particle size</subject><subject>Plasma sintering</subject><subject>Refractory materials</subject><subject>Self diffusion</subject><subject>sintering</subject><subject>Spark plasma sintering</subject><subject>Studies</subject><subject>transition metal diborides</subject><subject>Transition metals</subject><subject>Ultrahigh temperature</subject><subject>Zirconium compounds</subject><issn>0350-820X</issn><issn>1820-7413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqT35BxY8yurkY5PNUVqrhUIPVfAWsvmQlG1Tk-2h_97YiggDw5t5vDfzELrF8ECIbB_XqzUBwKXmF2iEWwK1YJheohHQBuqCP67RJOfQAUhoMGcwQrOZ2-Xgg9FDiLsq-urQD0nXyfmkzRDTsSqwUE7rrRt0X9nQxRSsq4xLehtMvkFXXvfZTX77GL3Pn9-mr_Vy9bKYPi1rQzkb6q6VzHPrBPO4sYYIZqxzVBPuG6wNk6JgYrm1ojxkhOBSMs1BthSTDiwdo8VZ10a9UfsUtjodVdRBnQYxfSqdhmB6p1pniWXOdBY80w3VQlIMxlDSMdb4rmjdnbX2KX4dXB7UJh7SrpyvCMNESg4EF9b9mWVSzLmE8ueKQf2krv6lTr8BOD90ug</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Fahrenholtz, W.G.</creator><creator>Hilmas, G.E.</creator><creator>Li, Ruixing</creator><general>International Institute for the Science of Sintering (IISS)</general><general>International Institute for the Science of Sintering, Beograd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>2020</creationdate><title>Densification of ultra-refractory transition metal diboride ceramics</title><author>Fahrenholtz, W.G. ; Hilmas, G.E. ; Li, Ruixing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding strength</topic><topic>Ceramics</topic><topic>Densification</topic><topic>Extreme values</topic><topic>Grain boundaries</topic><topic>Hafnium compounds</topic><topic>High temperature</topic><topic>Hot pressing</topic><topic>Impurities</topic><topic>Metals</topic><topic>Particle size</topic><topic>Plasma sintering</topic><topic>Refractory materials</topic><topic>Self diffusion</topic><topic>sintering</topic><topic>Spark plasma sintering</topic><topic>Studies</topic><topic>transition metal diborides</topic><topic>Transition metals</topic><topic>Ultrahigh temperature</topic><topic>Zirconium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahrenholtz, W.G.</creatorcontrib><creatorcontrib>Hilmas, G.E.</creatorcontrib><creatorcontrib>Li, Ruixing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Science of sintering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahrenholtz, W.G.</au><au>Hilmas, G.E.</au><au>Li, Ruixing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densification of ultra-refractory transition metal diboride ceramics</atitle><jtitle>Science of sintering</jtitle><date>2020</date><risdate>2020</risdate><volume>52</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0350-820X</issn><eissn>1820-7413</eissn><abstract>The densification behavior of transition metal diboride compounds was reviewed with emphasis on ZrB2 and HfB2. These compounds are considered ultra-high temperature ceramics because they have melting temperatures above 3000?C. Densification of transition metal diborides is difficult due to their strong covalent bonding, which results in extremely high melting temperatures and low self-diffusion coefficients. In addition, oxide impurities present on the surface of powder particles promotes coarsening, which further inhibits densification. Studies prior to the 1990s predominantly used hot pressing for densification. Those reports revealed densification mechanisms and identified that oxygen impurity contents below about 0.5 wt% were required for effective densification. Subsequent studies have employed advanced sintering methods such as spark plasma sintering and reactive hot pressing to produce materials with nearly full density and higher metallic purity. Further studies are needed to identify fundamental densification mechanisms and further improve the elevated temperature properties of transition metal diborides. nema</abstract><cop>Beograd</cop><pub>International Institute for the Science of Sintering (IISS)</pub><doi>10.2298/SOS2001001F</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0350-820X
ispartof Science of sintering, 2020, Vol.52 (1), p.1-14
issn 0350-820X
1820-7413
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8ed2d4ecbd0f4a53a79310cc32b445fb
source Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry
subjects Bonding strength
Ceramics
Densification
Extreme values
Grain boundaries
Hafnium compounds
High temperature
Hot pressing
Impurities
Metals
Particle size
Plasma sintering
Refractory materials
Self diffusion
sintering
Spark plasma sintering
Studies
transition metal diborides
Transition metals
Ultrahigh temperature
Zirconium compounds
title Densification of ultra-refractory transition metal diboride ceramics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densification%20of%20ultra-refractory%20transition%20metal%20diboride%20ceramics&rft.jtitle=Science%20of%20sintering&rft.au=Fahrenholtz,%20W.G.&rft.date=2020&rft.volume=52&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0350-820X&rft.eissn=1820-7413&rft_id=info:doi/10.2298/SOS2001001F&rft_dat=%3Cproquest_doaj_%3E2412996021%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-b894f6de74f15dc274cdee3a26f51ac497cde2d6dd7229c776994a6098312b0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2412996021&rft_id=info:pmid/&rfr_iscdi=true