Loading…
Upper Bounds for the Euclidean Operator Radius and Applications
The main aim of the present paper is to establish various sharp upper bounds for the Euclidean operator radius of an n -tuple of bounded linear operators on a Hilbert space. The tools used are provided by several generalizations of Bessel inequality due to Boas-Bellman, Bombieri, and the author. Nat...
Saved in:
Published in: | Journal of inequalities and applications 2008-01, Vol.2008 (1), p.472146-472146 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 472146 |
container_issue | 1 |
container_start_page | 472146 |
container_title | Journal of inequalities and applications |
container_volume | 2008 |
creator | Dragomir, S S |
description | The main aim of the present paper is to establish various sharp upper bounds for the Euclidean operator radius of an n -tuple of bounded linear operators on a Hilbert space. The tools used are provided by several generalizations of Bessel inequality due to Boas-Bellman, Bombieri, and the author. Natural applications for the norm and the numerical radius of bounded linear operators on Hilbert spaces are also given. |
doi_str_mv | 10.1186/1029-242X-2008-472146 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ee49f15996941899fbe0341d4363793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8ee49f15996941899fbe0341d4363793</doaj_id><sourcerecordid>2293202601</sourcerecordid><originalsourceid>FETCH-LOGICAL-b1584-5853b7e28ab7609dfbededb3f3083a6a7c2dec966a9a54ea78b1071771a1afb63</originalsourceid><addsrcrecordid>eNpVkE1Lw0AQhhdRsFZ_ghC8R_cr-3GSWqotFApiwdsyyW50S5qNm-Tgv3drRehphvcdnoEHoVuC7wlR4oFgqnPK6XtOMVY5l5RwcYYm__n5717khWL8El31_Q5jSpjiE_S47ToXs6cwtrbP6hCz4dNli7FqvHXQZpvUwpDiV7B-7DNobTbrusZXMPjQ9tfoooamdzd_c4q2z4u3-TJfb15W89k6L0mhePpcsFI6qqCUAmtbl846W7KaYcVAgKyodZUWAjQU3IFUJcGSSEmAQF0KNkWrI9cG2Jku-j3EbxPAm98gxA8DcfBV44xyjuuaFFoLzYnSOj3DjBPLmWBSs8RaHlmlD3tnK9cOEZoT6GlThb05yDQHmeYg2RwlJ9TdEdXF8DW6fjC7MMY2mTCqkITTdMV-AAjgfL0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857142214</pqid></control><display><type>article</type><title>Upper Bounds for the Euclidean Operator Radius and Applications</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><creator>Dragomir, S S</creator><creatorcontrib>Dragomir, S S</creatorcontrib><description>The main aim of the present paper is to establish various sharp upper bounds for the Euclidean operator radius of an n -tuple of bounded linear operators on a Hilbert space. The tools used are provided by several generalizations of Bessel inequality due to Boas-Bellman, Bombieri, and the author. Natural applications for the norm and the numerical radius of bounded linear operators on Hilbert spaces are also given.</description><identifier>ISSN: 1025-5834</identifier><identifier>ISSN: 1029-242X</identifier><identifier>EISSN: 1029-242X</identifier><identifier>DOI: 10.1186/1029-242X-2008-472146</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Decomposition ; Hilbert space ; Mathematics ; Studies</subject><ispartof>Journal of inequalities and applications, 2008-01, Vol.2008 (1), p.472146-472146</ispartof><rights>Copyright © 2008 S. S. Dragomir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/857142214/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/857142214?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Dragomir, S S</creatorcontrib><title>Upper Bounds for the Euclidean Operator Radius and Applications</title><title>Journal of inequalities and applications</title><description>The main aim of the present paper is to establish various sharp upper bounds for the Euclidean operator radius of an n -tuple of bounded linear operators on a Hilbert space. The tools used are provided by several generalizations of Bessel inequality due to Boas-Bellman, Bombieri, and the author. Natural applications for the norm and the numerical radius of bounded linear operators on Hilbert spaces are also given.</description><subject>Decomposition</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Studies</subject><issn>1025-5834</issn><issn>1029-242X</issn><issn>1029-242X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkE1Lw0AQhhdRsFZ_ghC8R_cr-3GSWqotFApiwdsyyW50S5qNm-Tgv3drRehphvcdnoEHoVuC7wlR4oFgqnPK6XtOMVY5l5RwcYYm__n5717khWL8El31_Q5jSpjiE_S47ToXs6cwtrbP6hCz4dNli7FqvHXQZpvUwpDiV7B-7DNobTbrusZXMPjQ9tfoooamdzd_c4q2z4u3-TJfb15W89k6L0mhePpcsFI6qqCUAmtbl846W7KaYcVAgKyodZUWAjQU3IFUJcGSSEmAQF0KNkWrI9cG2Jku-j3EbxPAm98gxA8DcfBV44xyjuuaFFoLzYnSOj3DjBPLmWBSs8RaHlmlD3tnK9cOEZoT6GlThb05yDQHmeYg2RwlJ9TdEdXF8DW6fjC7MMY2mTCqkITTdMV-AAjgfL0</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Dragomir, S S</creator><general>Springer Nature B.V</general><general>BioMed Central Ltd</general><general>SpringerOpen</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20080101</creationdate><title>Upper Bounds for the Euclidean Operator Radius and Applications</title><author>Dragomir, S S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b1584-5853b7e28ab7609dfbededb3f3083a6a7c2dec966a9a54ea78b1071771a1afb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Decomposition</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dragomir, S S</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of inequalities and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dragomir, S S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper Bounds for the Euclidean Operator Radius and Applications</atitle><jtitle>Journal of inequalities and applications</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>2008</volume><issue>1</issue><spage>472146</spage><epage>472146</epage><pages>472146-472146</pages><issn>1025-5834</issn><issn>1029-242X</issn><eissn>1029-242X</eissn><abstract>The main aim of the present paper is to establish various sharp upper bounds for the Euclidean operator radius of an n -tuple of bounded linear operators on a Hilbert space. The tools used are provided by several generalizations of Bessel inequality due to Boas-Bellman, Bombieri, and the author. Natural applications for the norm and the numerical radius of bounded linear operators on Hilbert spaces are also given.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1186/1029-242X-2008-472146</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1025-5834 |
ispartof | Journal of inequalities and applications, 2008-01, Vol.2008 (1), p.472146-472146 |
issn | 1025-5834 1029-242X 1029-242X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8ee49f15996941899fbe0341d4363793 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Decomposition Hilbert space Mathematics Studies |
title | Upper Bounds for the Euclidean Operator Radius and Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20Bounds%20for%20the%20Euclidean%20Operator%20Radius%20and%20Applications&rft.jtitle=Journal%20of%20inequalities%20and%20applications&rft.au=Dragomir,%20S%20S&rft.date=2008-01-01&rft.volume=2008&rft.issue=1&rft.spage=472146&rft.epage=472146&rft.pages=472146-472146&rft.issn=1025-5834&rft.eissn=1029-242X&rft_id=info:doi/10.1186/1029-242X-2008-472146&rft_dat=%3Cproquest_doaj_%3E2293202601%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b1584-5853b7e28ab7609dfbededb3f3083a6a7c2dec966a9a54ea78b1071771a1afb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857142214&rft_id=info:pmid/&rfr_iscdi=true |