Loading…
Ammonia Gas Adsorption in Fixed Bed and Fluidized Bed Using Bentonite Particles
The present paper investigates the ammonia adsorption kinetic from air on sodium bentonite particles and on aluminum pillared bentonite particles in fixed bed and fluidized bed. The sodium bentonite is used as adsorbents and as raw material for chemically modified bentonite with aluminum polyhydroxo...
Saved in:
Published in: | Applied sciences 2025-01, Vol.15 (2), p.832 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1672-b55e4bc4777eed6543d7b6fe7e627e936cfc265eabe4a9959826198a7805b5f03 |
container_end_page | |
container_issue | 2 |
container_start_page | 832 |
container_title | Applied sciences |
container_volume | 15 |
creator | Muntianu, Gabriela Georgescu, Ana-Maria Rosu, Ana-Maria Platon, Nicoleta Arus, Vasilica Alisa Jinescu, Cosmin Valeriu Nistor, Ileana Denisa |
description | The present paper investigates the ammonia adsorption kinetic from air on sodium bentonite particles and on aluminum pillared bentonite particles in fixed bed and fluidized bed. The sodium bentonite is used as adsorbents and as raw material for chemically modified bentonite with aluminum polyhydroxocations. The aluminum pillared bentonite is prepared by a classical pillaring process to create high porosity and to increase the ammonia particle surface contact. Adsorbents used were characterized by the following analysis: granulometric distribution, acid–base character determination by Thermal Programmed Desorption (TPD), elemental microanalysis by Energy Dispersive X-Ray coupled with scanning electron microscopy (EDX-SEM), X-Ray diffractograms, adsorption–desorption isotherms by Brunauer–Emmett–Teller method and distribution of pore sizes and pore volume calculation by Barrett–Joyner–Halenda method. The variable parameters used in ammonia adsorption capacity on bentonite particle determination are particles size, gas velocity and total gas flow rate. The parameters kept constant during the ammonia adsorption process on bentonite particles are geometric ratio, adsorbent mass and initial ammonia gas concentration. The ammonia adsorption capacity on sodium bentonite particles and on aluminum pillared bentonite particles was measured until bed saturation as a function of the gas–particle contact technique. The best results are obtained with homogeneous fluidization with small gas bubbles for the aluminum pillared bentonite particles after 100 s bed saturation with ammonia adsorption capacity of 0.945 mmol NH3/g. To complete the study, ammonia desorption determination was carried out by a thermo-desorption process in order to recover the used particles. The adsorbent particles studied proved to be high-performance materials in order to use them in ammonia air depollution. Fluidized bed adsorption can be an efficient technique to accelerate mass transfer between ammonia from air and adsorbent particles. |
doi_str_mv | 10.3390/app15020832 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8ef0deb569d74f8ea0a918b40d2c4a50</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8ef0deb569d74f8ea0a918b40d2c4a50</doaj_id><sourcerecordid>3159291607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1672-b55e4bc4777eed6543d7b6fe7e627e936cfc265eabe4a9959826198a7805b5f03</originalsourceid><addsrcrecordid>eNpNUctKA0EQHETBEHPyBxY8SnTej2MMJgYC8WDOw-xOb5iQ7KwzG1C_3o0Jkoamm6K6uqAQuif4iTGDn13bEoEp1oxeoQHFSo4ZJ-r6Yr9Fo5y3uC9DmCZ4gFaT_T42wRVzl4uJzzG1XYhNEZpiFr7AFy99u8YXs90h-PBzRtY5NJt-a7r-uIPi3aUuVDvId-imdrsMo_McovXs9WP6Nl6u5ovpZDmuiFR0XAoBvKy4UgrAS8GZV6WsQYGkCgyTVV1RKcCVwJ0xwmgqidFOaSxKUWM2RIuTro9ua9sU9i592-iC_QNi2tizJauhxh5KIY1XvNbgsDNElxx7WnEnjloPJ602xc8D5M5u4yE1vX3LiDDUEIlVz3o8saoUc05Q_38l2B4DsBcBsF9h83aX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159291607</pqid></control><display><type>article</type><title>Ammonia Gas Adsorption in Fixed Bed and Fluidized Bed Using Bentonite Particles</title><source>Publicly Available Content Database</source><creator>Muntianu, Gabriela ; Georgescu, Ana-Maria ; Rosu, Ana-Maria ; Platon, Nicoleta ; Arus, Vasilica Alisa ; Jinescu, Cosmin Valeriu ; Nistor, Ileana Denisa</creator><creatorcontrib>Muntianu, Gabriela ; Georgescu, Ana-Maria ; Rosu, Ana-Maria ; Platon, Nicoleta ; Arus, Vasilica Alisa ; Jinescu, Cosmin Valeriu ; Nistor, Ileana Denisa</creatorcontrib><description>The present paper investigates the ammonia adsorption kinetic from air on sodium bentonite particles and on aluminum pillared bentonite particles in fixed bed and fluidized bed. The sodium bentonite is used as adsorbents and as raw material for chemically modified bentonite with aluminum polyhydroxocations. The aluminum pillared bentonite is prepared by a classical pillaring process to create high porosity and to increase the ammonia particle surface contact. Adsorbents used were characterized by the following analysis: granulometric distribution, acid–base character determination by Thermal Programmed Desorption (TPD), elemental microanalysis by Energy Dispersive X-Ray coupled with scanning electron microscopy (EDX-SEM), X-Ray diffractograms, adsorption–desorption isotherms by Brunauer–Emmett–Teller method and distribution of pore sizes and pore volume calculation by Barrett–Joyner–Halenda method. The variable parameters used in ammonia adsorption capacity on bentonite particle determination are particles size, gas velocity and total gas flow rate. The parameters kept constant during the ammonia adsorption process on bentonite particles are geometric ratio, adsorbent mass and initial ammonia gas concentration. The ammonia adsorption capacity on sodium bentonite particles and on aluminum pillared bentonite particles was measured until bed saturation as a function of the gas–particle contact technique. The best results are obtained with homogeneous fluidization with small gas bubbles for the aluminum pillared bentonite particles after 100 s bed saturation with ammonia adsorption capacity of 0.945 mmol NH3/g. To complete the study, ammonia desorption determination was carried out by a thermo-desorption process in order to recover the used particles. The adsorbent particles studied proved to be high-performance materials in order to use them in ammonia air depollution. Fluidized bed adsorption can be an efficient technique to accelerate mass transfer between ammonia from air and adsorbent particles.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app15020832</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorbents ; Adsorption ; Aluminum ; aluminum pillared bentonite ; Ammonia ; ammonia adsorption ; Carbon ; Caustic soda ; Chloride ; fixed bed ; fluidized bed ; Gases ; particle regeneration ; Particle size ; Pollutants ; Sodium ; sodium bentonite</subject><ispartof>Applied sciences, 2025-01, Vol.15 (2), p.832</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1672-b55e4bc4777eed6543d7b6fe7e627e936cfc265eabe4a9959826198a7805b5f03</cites><orcidid>0000-0002-1537-7754 ; 0000-0001-5551-4752 ; 0000-0002-9740-4655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3159291607/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3159291607?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Muntianu, Gabriela</creatorcontrib><creatorcontrib>Georgescu, Ana-Maria</creatorcontrib><creatorcontrib>Rosu, Ana-Maria</creatorcontrib><creatorcontrib>Platon, Nicoleta</creatorcontrib><creatorcontrib>Arus, Vasilica Alisa</creatorcontrib><creatorcontrib>Jinescu, Cosmin Valeriu</creatorcontrib><creatorcontrib>Nistor, Ileana Denisa</creatorcontrib><title>Ammonia Gas Adsorption in Fixed Bed and Fluidized Bed Using Bentonite Particles</title><title>Applied sciences</title><description>The present paper investigates the ammonia adsorption kinetic from air on sodium bentonite particles and on aluminum pillared bentonite particles in fixed bed and fluidized bed. The sodium bentonite is used as adsorbents and as raw material for chemically modified bentonite with aluminum polyhydroxocations. The aluminum pillared bentonite is prepared by a classical pillaring process to create high porosity and to increase the ammonia particle surface contact. Adsorbents used were characterized by the following analysis: granulometric distribution, acid–base character determination by Thermal Programmed Desorption (TPD), elemental microanalysis by Energy Dispersive X-Ray coupled with scanning electron microscopy (EDX-SEM), X-Ray diffractograms, adsorption–desorption isotherms by Brunauer–Emmett–Teller method and distribution of pore sizes and pore volume calculation by Barrett–Joyner–Halenda method. The variable parameters used in ammonia adsorption capacity on bentonite particle determination are particles size, gas velocity and total gas flow rate. The parameters kept constant during the ammonia adsorption process on bentonite particles are geometric ratio, adsorbent mass and initial ammonia gas concentration. The ammonia adsorption capacity on sodium bentonite particles and on aluminum pillared bentonite particles was measured until bed saturation as a function of the gas–particle contact technique. The best results are obtained with homogeneous fluidization with small gas bubbles for the aluminum pillared bentonite particles after 100 s bed saturation with ammonia adsorption capacity of 0.945 mmol NH3/g. To complete the study, ammonia desorption determination was carried out by a thermo-desorption process in order to recover the used particles. The adsorbent particles studied proved to be high-performance materials in order to use them in ammonia air depollution. Fluidized bed adsorption can be an efficient technique to accelerate mass transfer between ammonia from air and adsorbent particles.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Aluminum</subject><subject>aluminum pillared bentonite</subject><subject>Ammonia</subject><subject>ammonia adsorption</subject><subject>Carbon</subject><subject>Caustic soda</subject><subject>Chloride</subject><subject>fixed bed</subject><subject>fluidized bed</subject><subject>Gases</subject><subject>particle regeneration</subject><subject>Particle size</subject><subject>Pollutants</subject><subject>Sodium</subject><subject>sodium bentonite</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKA0EQHETBEHPyBxY8SnTej2MMJgYC8WDOw-xOb5iQ7KwzG1C_3o0Jkoamm6K6uqAQuif4iTGDn13bEoEp1oxeoQHFSo4ZJ-r6Yr9Fo5y3uC9DmCZ4gFaT_T42wRVzl4uJzzG1XYhNEZpiFr7AFy99u8YXs90h-PBzRtY5NJt-a7r-uIPi3aUuVDvId-imdrsMo_McovXs9WP6Nl6u5ovpZDmuiFR0XAoBvKy4UgrAS8GZV6WsQYGkCgyTVV1RKcCVwJ0xwmgqidFOaSxKUWM2RIuTro9ua9sU9i592-iC_QNi2tizJauhxh5KIY1XvNbgsDNElxx7WnEnjloPJ602xc8D5M5u4yE1vX3LiDDUEIlVz3o8saoUc05Q_38l2B4DsBcBsF9h83aX</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Muntianu, Gabriela</creator><creator>Georgescu, Ana-Maria</creator><creator>Rosu, Ana-Maria</creator><creator>Platon, Nicoleta</creator><creator>Arus, Vasilica Alisa</creator><creator>Jinescu, Cosmin Valeriu</creator><creator>Nistor, Ileana Denisa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1537-7754</orcidid><orcidid>https://orcid.org/0000-0001-5551-4752</orcidid><orcidid>https://orcid.org/0000-0002-9740-4655</orcidid></search><sort><creationdate>20250101</creationdate><title>Ammonia Gas Adsorption in Fixed Bed and Fluidized Bed Using Bentonite Particles</title><author>Muntianu, Gabriela ; Georgescu, Ana-Maria ; Rosu, Ana-Maria ; Platon, Nicoleta ; Arus, Vasilica Alisa ; Jinescu, Cosmin Valeriu ; Nistor, Ileana Denisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1672-b55e4bc4777eed6543d7b6fe7e627e936cfc265eabe4a9959826198a7805b5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Aluminum</topic><topic>aluminum pillared bentonite</topic><topic>Ammonia</topic><topic>ammonia adsorption</topic><topic>Carbon</topic><topic>Caustic soda</topic><topic>Chloride</topic><topic>fixed bed</topic><topic>fluidized bed</topic><topic>Gases</topic><topic>particle regeneration</topic><topic>Particle size</topic><topic>Pollutants</topic><topic>Sodium</topic><topic>sodium bentonite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muntianu, Gabriela</creatorcontrib><creatorcontrib>Georgescu, Ana-Maria</creatorcontrib><creatorcontrib>Rosu, Ana-Maria</creatorcontrib><creatorcontrib>Platon, Nicoleta</creatorcontrib><creatorcontrib>Arus, Vasilica Alisa</creatorcontrib><creatorcontrib>Jinescu, Cosmin Valeriu</creatorcontrib><creatorcontrib>Nistor, Ileana Denisa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muntianu, Gabriela</au><au>Georgescu, Ana-Maria</au><au>Rosu, Ana-Maria</au><au>Platon, Nicoleta</au><au>Arus, Vasilica Alisa</au><au>Jinescu, Cosmin Valeriu</au><au>Nistor, Ileana Denisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonia Gas Adsorption in Fixed Bed and Fluidized Bed Using Bentonite Particles</atitle><jtitle>Applied sciences</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>15</volume><issue>2</issue><spage>832</spage><pages>832-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The present paper investigates the ammonia adsorption kinetic from air on sodium bentonite particles and on aluminum pillared bentonite particles in fixed bed and fluidized bed. The sodium bentonite is used as adsorbents and as raw material for chemically modified bentonite with aluminum polyhydroxocations. The aluminum pillared bentonite is prepared by a classical pillaring process to create high porosity and to increase the ammonia particle surface contact. Adsorbents used were characterized by the following analysis: granulometric distribution, acid–base character determination by Thermal Programmed Desorption (TPD), elemental microanalysis by Energy Dispersive X-Ray coupled with scanning electron microscopy (EDX-SEM), X-Ray diffractograms, adsorption–desorption isotherms by Brunauer–Emmett–Teller method and distribution of pore sizes and pore volume calculation by Barrett–Joyner–Halenda method. The variable parameters used in ammonia adsorption capacity on bentonite particle determination are particles size, gas velocity and total gas flow rate. The parameters kept constant during the ammonia adsorption process on bentonite particles are geometric ratio, adsorbent mass and initial ammonia gas concentration. The ammonia adsorption capacity on sodium bentonite particles and on aluminum pillared bentonite particles was measured until bed saturation as a function of the gas–particle contact technique. The best results are obtained with homogeneous fluidization with small gas bubbles for the aluminum pillared bentonite particles after 100 s bed saturation with ammonia adsorption capacity of 0.945 mmol NH3/g. To complete the study, ammonia desorption determination was carried out by a thermo-desorption process in order to recover the used particles. The adsorbent particles studied proved to be high-performance materials in order to use them in ammonia air depollution. Fluidized bed adsorption can be an efficient technique to accelerate mass transfer between ammonia from air and adsorbent particles.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app15020832</doi><orcidid>https://orcid.org/0000-0002-1537-7754</orcidid><orcidid>https://orcid.org/0000-0001-5551-4752</orcidid><orcidid>https://orcid.org/0000-0002-9740-4655</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2025-01, Vol.15 (2), p.832 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8ef0deb569d74f8ea0a918b40d2c4a50 |
source | Publicly Available Content Database |
subjects | Adsorbents Adsorption Aluminum aluminum pillared bentonite Ammonia ammonia adsorption Carbon Caustic soda Chloride fixed bed fluidized bed Gases particle regeneration Particle size Pollutants Sodium sodium bentonite |
title | Ammonia Gas Adsorption in Fixed Bed and Fluidized Bed Using Bentonite Particles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonia%20Gas%20Adsorption%20in%20Fixed%20Bed%20and%20Fluidized%20Bed%20Using%20Bentonite%20Particles&rft.jtitle=Applied%20sciences&rft.au=Muntianu,%20Gabriela&rft.date=2025-01-01&rft.volume=15&rft.issue=2&rft.spage=832&rft.pages=832-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app15020832&rft_dat=%3Cproquest_doaj_%3E3159291607%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1672-b55e4bc4777eed6543d7b6fe7e627e936cfc265eabe4a9959826198a7805b5f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3159291607&rft_id=info:pmid/&rfr_iscdi=true |