Loading…

GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis

Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular datab...

Full description

Saved in:
Bibliographic Details
Published in:mSystems 2024-02, Vol.9 (2), p.e0095023-e0095023
Main Authors: Molano, Leidy-Alejandra G, Vega-Abellaneda, Sara, Manichanh, Chaysavanh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63
container_end_page e0095023
container_issue 2
container_start_page e0095023
container_title mSystems
container_volume 9
creator Molano, Leidy-Alejandra G
Vega-Abellaneda, Sara
Manichanh, Chaysavanh
description Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular databases such as SILVA, Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). However, the inconsistency of the nomenclature across databases and the presence of shortcomings in the annotation of these databases are limiting the resolution of the analysis. To overcome these limitations, we created the GSR database (Greengenes, SILVA, and RDP database), an integrated and manually curated database for bacterial and archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this database creation pipeline includes a taxonomy unification step to ensure consistency in taxonomical annotations. The database was validated with three mock communities, two real data sets, and a 10-fold cross-validation method and compared with existing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and MetaSquare. Results showed that the GSR database enhances taxonomical annotations of 16S sequences, outperforming current 16S databases at the species level, based on the evaluation of the mock communities. This was confirmed by the 10-fold cross-validation, except for Greengenes 2. The GSR database is available for full-length 16S sequences and the most commonly used hypervariable regions: V4, V1-V3, V3-V4, and V3-V5.IMPORTANCETaxonomic assignments of microorganisms have long been hindered by inconsistent nomenclature and annotation issues in existing databases like SILVA, Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike previous approaches, our innovative pipeline includes a unique taxonomy unification step, ensuring consistent and reliable annotations. Our evaluation analyses showed that GSR-DB outperforms existing databases in providing species-level resolution, especially based on mock-community analysis, making it a game-changer for microbiome studies. Moreover, GSR-DB is designed to be accessible to researchers with limited computational resources, making it a powerful tool for scientists across the board. Available for full-len
doi_str_mv 10.1128/msystems.00950-23
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8effc7c0dc8d4001aaa556d1c8207539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8effc7c0dc8d4001aaa556d1c8207539</doaj_id><sourcerecordid>3022826247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63</originalsourceid><addsrcrecordid>eNp9kk9PFTEUxSdGIwT5AG5MEzdu5nn7b6bjxiAikhBNQHcmzX1tB_vSTh_tjPHx6R14gODCVW_bc363vTlV9ZLCglKm3sayKaOLZQHQSagZf1LtMt52tYS2ffqg3qn2S1kBAG14S1n3vNrhiqqOyWa3-nF8flZ__PCOIIk4TBjChpgp4-gswcGStB599FfzbsTfaUjRGwzE4ohLLI70KRPanJN89uWAYFwHb9IwGzFsii8vqmc9huL2b9e96vuno2-Hn-vTr8cnhwenNQolx7pD0SIVfesAEKQxRhoQRvZirphtKChpEVAgMmPtknJpqFNKSGGVWDZ8rzrZcm3ClV5nHzFvdEKvbw5SvtCYR2-C08r1vWkNWKOsmEeCiFI2lhrFoJW8m1nvt6z1tIzOGjeMGcMj6OObwf_UF-mXptCJhql2Jry5JeR0Obky6uiLcSHg4NJUNOsoVQIolbP09T_SVZryPL2iOTCmWMPENZBuVSanUrLr719DQV9nQd9lQd9kQTM-exZbD5bI_lL_Z3j18N_3Le6iwv8AacTAzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3022826247</pqid></control><display><type>article</type><title>GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>American Society for Microbiology Journals</source><creator>Molano, Leidy-Alejandra G ; Vega-Abellaneda, Sara ; Manichanh, Chaysavanh</creator><contributor>Segata, Nicola</contributor><creatorcontrib>Molano, Leidy-Alejandra G ; Vega-Abellaneda, Sara ; Manichanh, Chaysavanh ; Segata, Nicola</creatorcontrib><description>Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular databases such as SILVA, Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). However, the inconsistency of the nomenclature across databases and the presence of shortcomings in the annotation of these databases are limiting the resolution of the analysis. To overcome these limitations, we created the GSR database (Greengenes, SILVA, and RDP database), an integrated and manually curated database for bacterial and archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this database creation pipeline includes a taxonomy unification step to ensure consistency in taxonomical annotations. The database was validated with three mock communities, two real data sets, and a 10-fold cross-validation method and compared with existing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and MetaSquare. Results showed that the GSR database enhances taxonomical annotations of 16S sequences, outperforming current 16S databases at the species level, based on the evaluation of the mock communities. This was confirmed by the 10-fold cross-validation, except for Greengenes 2. The GSR database is available for full-length 16S sequences and the most commonly used hypervariable regions: V4, V1-V3, V3-V4, and V3-V5.IMPORTANCETaxonomic assignments of microorganisms have long been hindered by inconsistent nomenclature and annotation issues in existing databases like SILVA, Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike previous approaches, our innovative pipeline includes a unique taxonomy unification step, ensuring consistent and reliable annotations. Our evaluation analyses showed that GSR-DB outperforms existing databases in providing species-level resolution, especially based on mock-community analysis, making it a game-changer for microbiome studies. Moreover, GSR-DB is designed to be accessible to researchers with limited computational resources, making it a powerful tool for scientists across the board. Available for full-length 16S sequences and commonly used hypervariable regions, including V4, V1-V3, V3-V4, and V3-V5, GSR-DB is a go-to database for robust and accurate microbial taxonomy analysis.</description><identifier>ISSN: 2379-5077</identifier><identifier>EISSN: 2379-5077</identifier><identifier>DOI: 10.1128/msystems.00950-23</identifier><identifier>PMID: 38189256</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>16S rRNA ; Algorithms ; Archaea - genetics ; Bacteria ; Bacteria - genetics ; Computational Biology ; Databases, Factual ; Datasets ; Genomes ; microbiome ; Microbiomes ; Microbiota - genetics ; Nomenclature ; Research Article ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Taxonomy ; Vagina</subject><ispartof>mSystems, 2024-02, Vol.9 (2), p.e0095023-e0095023</ispartof><rights>Copyright © 2024 Molano et al.</rights><rights>Copyright © 2024 Molano et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2024 Molano et al. 2024 Molano et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63</cites><orcidid>0009-0007-0051-8554 ; 0000-0003-0069-6098 ; 0000-0002-2287-4003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3022826247/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3022826247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,25753,27924,27925,37012,37013,44590,52751,52752,52753,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38189256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Segata, Nicola</contributor><creatorcontrib>Molano, Leidy-Alejandra G</creatorcontrib><creatorcontrib>Vega-Abellaneda, Sara</creatorcontrib><creatorcontrib>Manichanh, Chaysavanh</creatorcontrib><title>GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis</title><title>mSystems</title><addtitle>mSystems</addtitle><addtitle>mSystems</addtitle><description>Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular databases such as SILVA, Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). However, the inconsistency of the nomenclature across databases and the presence of shortcomings in the annotation of these databases are limiting the resolution of the analysis. To overcome these limitations, we created the GSR database (Greengenes, SILVA, and RDP database), an integrated and manually curated database for bacterial and archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this database creation pipeline includes a taxonomy unification step to ensure consistency in taxonomical annotations. The database was validated with three mock communities, two real data sets, and a 10-fold cross-validation method and compared with existing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and MetaSquare. Results showed that the GSR database enhances taxonomical annotations of 16S sequences, outperforming current 16S databases at the species level, based on the evaluation of the mock communities. This was confirmed by the 10-fold cross-validation, except for Greengenes 2. The GSR database is available for full-length 16S sequences and the most commonly used hypervariable regions: V4, V1-V3, V3-V4, and V3-V5.IMPORTANCETaxonomic assignments of microorganisms have long been hindered by inconsistent nomenclature and annotation issues in existing databases like SILVA, Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike previous approaches, our innovative pipeline includes a unique taxonomy unification step, ensuring consistent and reliable annotations. Our evaluation analyses showed that GSR-DB outperforms existing databases in providing species-level resolution, especially based on mock-community analysis, making it a game-changer for microbiome studies. Moreover, GSR-DB is designed to be accessible to researchers with limited computational resources, making it a powerful tool for scientists across the board. Available for full-length 16S sequences and commonly used hypervariable regions, including V4, V1-V3, V3-V4, and V3-V5, GSR-DB is a go-to database for robust and accurate microbial taxonomy analysis.</description><subject>16S rRNA</subject><subject>Algorithms</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Computational Biology</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Genomes</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microbiota - genetics</subject><subject>Nomenclature</subject><subject>Research Article</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Taxonomy</subject><subject>Vagina</subject><issn>2379-5077</issn><issn>2379-5077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9PFTEUxSdGIwT5AG5MEzdu5nn7b6bjxiAikhBNQHcmzX1tB_vSTh_tjPHx6R14gODCVW_bc363vTlV9ZLCglKm3sayKaOLZQHQSagZf1LtMt52tYS2ffqg3qn2S1kBAG14S1n3vNrhiqqOyWa3-nF8flZ__PCOIIk4TBjChpgp4-gswcGStB599FfzbsTfaUjRGwzE4ohLLI70KRPanJN89uWAYFwHb9IwGzFsii8vqmc9huL2b9e96vuno2-Hn-vTr8cnhwenNQolx7pD0SIVfesAEKQxRhoQRvZirphtKChpEVAgMmPtknJpqFNKSGGVWDZ8rzrZcm3ClV5nHzFvdEKvbw5SvtCYR2-C08r1vWkNWKOsmEeCiFI2lhrFoJW8m1nvt6z1tIzOGjeMGcMj6OObwf_UF-mXptCJhql2Jry5JeR0Obky6uiLcSHg4NJUNOsoVQIolbP09T_SVZryPL2iOTCmWMPENZBuVSanUrLr719DQV9nQd9lQd9kQTM-exZbD5bI_lL_Z3j18N_3Le6iwv8AacTAzw</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Molano, Leidy-Alejandra G</creator><creator>Vega-Abellaneda, Sara</creator><creator>Manichanh, Chaysavanh</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-0051-8554</orcidid><orcidid>https://orcid.org/0000-0003-0069-6098</orcidid><orcidid>https://orcid.org/0000-0002-2287-4003</orcidid></search><sort><creationdate>20240220</creationdate><title>GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis</title><author>Molano, Leidy-Alejandra G ; Vega-Abellaneda, Sara ; Manichanh, Chaysavanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>16S rRNA</topic><topic>Algorithms</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Computational Biology</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Genomes</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microbiota - genetics</topic><topic>Nomenclature</topic><topic>Research Article</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Taxonomy</topic><topic>Vagina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molano, Leidy-Alejandra G</creatorcontrib><creatorcontrib>Vega-Abellaneda, Sara</creatorcontrib><creatorcontrib>Manichanh, Chaysavanh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>mSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molano, Leidy-Alejandra G</au><au>Vega-Abellaneda, Sara</au><au>Manichanh, Chaysavanh</au><au>Segata, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis</atitle><jtitle>mSystems</jtitle><stitle>mSystems</stitle><addtitle>mSystems</addtitle><date>2024-02-20</date><risdate>2024</risdate><volume>9</volume><issue>2</issue><spage>e0095023</spage><epage>e0095023</epage><pages>e0095023-e0095023</pages><issn>2379-5077</issn><eissn>2379-5077</eissn><abstract>Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular databases such as SILVA, Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). However, the inconsistency of the nomenclature across databases and the presence of shortcomings in the annotation of these databases are limiting the resolution of the analysis. To overcome these limitations, we created the GSR database (Greengenes, SILVA, and RDP database), an integrated and manually curated database for bacterial and archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this database creation pipeline includes a taxonomy unification step to ensure consistency in taxonomical annotations. The database was validated with three mock communities, two real data sets, and a 10-fold cross-validation method and compared with existing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and MetaSquare. Results showed that the GSR database enhances taxonomical annotations of 16S sequences, outperforming current 16S databases at the species level, based on the evaluation of the mock communities. This was confirmed by the 10-fold cross-validation, except for Greengenes 2. The GSR database is available for full-length 16S sequences and the most commonly used hypervariable regions: V4, V1-V3, V3-V4, and V3-V5.IMPORTANCETaxonomic assignments of microorganisms have long been hindered by inconsistent nomenclature and annotation issues in existing databases like SILVA, Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike previous approaches, our innovative pipeline includes a unique taxonomy unification step, ensuring consistent and reliable annotations. Our evaluation analyses showed that GSR-DB outperforms existing databases in providing species-level resolution, especially based on mock-community analysis, making it a game-changer for microbiome studies. Moreover, GSR-DB is designed to be accessible to researchers with limited computational resources, making it a powerful tool for scientists across the board. Available for full-length 16S sequences and commonly used hypervariable regions, including V4, V1-V3, V3-V4, and V3-V5, GSR-DB is a go-to database for robust and accurate microbial taxonomy analysis.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>38189256</pmid><doi>10.1128/msystems.00950-23</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0007-0051-8554</orcidid><orcidid>https://orcid.org/0000-0003-0069-6098</orcidid><orcidid>https://orcid.org/0000-0002-2287-4003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-5077
ispartof mSystems, 2024-02, Vol.9 (2), p.e0095023-e0095023
issn 2379-5077
2379-5077
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8effc7c0dc8d4001aaa556d1c8207539
source Open Access: PubMed Central; Publicly Available Content Database; American Society for Microbiology Journals
subjects 16S rRNA
Algorithms
Archaea - genetics
Bacteria
Bacteria - genetics
Computational Biology
Databases, Factual
Datasets
Genomes
microbiome
Microbiomes
Microbiota - genetics
Nomenclature
Research Article
RNA, Ribosomal, 16S - genetics
rRNA 16S
Taxonomy
Vagina
title GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GSR-DB:%20a%20manually%20curated%20and%20optimized%20taxonomical%20database%20for%2016S%20rRNA%20amplicon%20analysis&rft.jtitle=mSystems&rft.au=Molano,%20Leidy-Alejandra%20G&rft.date=2024-02-20&rft.volume=9&rft.issue=2&rft.spage=e0095023&rft.epage=e0095023&rft.pages=e0095023-e0095023&rft.issn=2379-5077&rft.eissn=2379-5077&rft_id=info:doi/10.1128/msystems.00950-23&rft_dat=%3Cproquest_doaj_%3E3022826247%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3022826247&rft_id=info:pmid/38189256&rfr_iscdi=true