Loading…
GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis
Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular datab...
Saved in:
Published in: | mSystems 2024-02, Vol.9 (2), p.e0095023-e0095023 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63 |
container_end_page | e0095023 |
container_issue | 2 |
container_start_page | e0095023 |
container_title | mSystems |
container_volume | 9 |
creator | Molano, Leidy-Alejandra G Vega-Abellaneda, Sara Manichanh, Chaysavanh |
description | Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular databases such as SILVA, Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). However, the inconsistency of the nomenclature across databases and the presence of shortcomings in the annotation of these databases are limiting the resolution of the analysis. To overcome these limitations, we created the GSR database (Greengenes, SILVA, and RDP database), an integrated and manually curated database for bacterial and archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this database creation pipeline includes a taxonomy unification step to ensure consistency in taxonomical annotations. The database was validated with three mock communities, two real data sets, and a 10-fold cross-validation method and compared with existing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and MetaSquare. Results showed that the GSR database enhances taxonomical annotations of 16S sequences, outperforming current 16S databases at the species level, based on the evaluation of the mock communities. This was confirmed by the 10-fold cross-validation, except for Greengenes 2. The GSR database is available for full-length 16S sequences and the most commonly used hypervariable regions: V4, V1-V3, V3-V4, and V3-V5.IMPORTANCETaxonomic assignments of microorganisms have long been hindered by inconsistent nomenclature and annotation issues in existing databases like SILVA, Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike previous approaches, our innovative pipeline includes a unique taxonomy unification step, ensuring consistent and reliable annotations. Our evaluation analyses showed that GSR-DB outperforms existing databases in providing species-level resolution, especially based on mock-community analysis, making it a game-changer for microbiome studies. Moreover, GSR-DB is designed to be accessible to researchers with limited computational resources, making it a powerful tool for scientists across the board. Available for full-len |
doi_str_mv | 10.1128/msystems.00950-23 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8effc7c0dc8d4001aaa556d1c8207539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8effc7c0dc8d4001aaa556d1c8207539</doaj_id><sourcerecordid>3022826247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63</originalsourceid><addsrcrecordid>eNp9kk9PFTEUxSdGIwT5AG5MEzdu5nn7b6bjxiAikhBNQHcmzX1tB_vSTh_tjPHx6R14gODCVW_bc363vTlV9ZLCglKm3sayKaOLZQHQSagZf1LtMt52tYS2ffqg3qn2S1kBAG14S1n3vNrhiqqOyWa3-nF8flZ__PCOIIk4TBjChpgp4-gswcGStB599FfzbsTfaUjRGwzE4ohLLI70KRPanJN89uWAYFwHb9IwGzFsii8vqmc9huL2b9e96vuno2-Hn-vTr8cnhwenNQolx7pD0SIVfesAEKQxRhoQRvZirphtKChpEVAgMmPtknJpqFNKSGGVWDZ8rzrZcm3ClV5nHzFvdEKvbw5SvtCYR2-C08r1vWkNWKOsmEeCiFI2lhrFoJW8m1nvt6z1tIzOGjeMGcMj6OObwf_UF-mXptCJhql2Jry5JeR0Obky6uiLcSHg4NJUNOsoVQIolbP09T_SVZryPL2iOTCmWMPENZBuVSanUrLr719DQV9nQd9lQd9kQTM-exZbD5bI_lL_Z3j18N_3Le6iwv8AacTAzw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3022826247</pqid></control><display><type>article</type><title>GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>American Society for Microbiology Journals</source><creator>Molano, Leidy-Alejandra G ; Vega-Abellaneda, Sara ; Manichanh, Chaysavanh</creator><contributor>Segata, Nicola</contributor><creatorcontrib>Molano, Leidy-Alejandra G ; Vega-Abellaneda, Sara ; Manichanh, Chaysavanh ; Segata, Nicola</creatorcontrib><description>Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular databases such as SILVA, Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). However, the inconsistency of the nomenclature across databases and the presence of shortcomings in the annotation of these databases are limiting the resolution of the analysis. To overcome these limitations, we created the GSR database (Greengenes, SILVA, and RDP database), an integrated and manually curated database for bacterial and archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this database creation pipeline includes a taxonomy unification step to ensure consistency in taxonomical annotations. The database was validated with three mock communities, two real data sets, and a 10-fold cross-validation method and compared with existing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and MetaSquare. Results showed that the GSR database enhances taxonomical annotations of 16S sequences, outperforming current 16S databases at the species level, based on the evaluation of the mock communities. This was confirmed by the 10-fold cross-validation, except for Greengenes 2. The GSR database is available for full-length 16S sequences and the most commonly used hypervariable regions: V4, V1-V3, V3-V4, and V3-V5.IMPORTANCETaxonomic assignments of microorganisms have long been hindered by inconsistent nomenclature and annotation issues in existing databases like SILVA, Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike previous approaches, our innovative pipeline includes a unique taxonomy unification step, ensuring consistent and reliable annotations. Our evaluation analyses showed that GSR-DB outperforms existing databases in providing species-level resolution, especially based on mock-community analysis, making it a game-changer for microbiome studies. Moreover, GSR-DB is designed to be accessible to researchers with limited computational resources, making it a powerful tool for scientists across the board. Available for full-length 16S sequences and commonly used hypervariable regions, including V4, V1-V3, V3-V4, and V3-V5, GSR-DB is a go-to database for robust and accurate microbial taxonomy analysis.</description><identifier>ISSN: 2379-5077</identifier><identifier>EISSN: 2379-5077</identifier><identifier>DOI: 10.1128/msystems.00950-23</identifier><identifier>PMID: 38189256</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>16S rRNA ; Algorithms ; Archaea - genetics ; Bacteria ; Bacteria - genetics ; Computational Biology ; Databases, Factual ; Datasets ; Genomes ; microbiome ; Microbiomes ; Microbiota - genetics ; Nomenclature ; Research Article ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Taxonomy ; Vagina</subject><ispartof>mSystems, 2024-02, Vol.9 (2), p.e0095023-e0095023</ispartof><rights>Copyright © 2024 Molano et al.</rights><rights>Copyright © 2024 Molano et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2024 Molano et al. 2024 Molano et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63</cites><orcidid>0009-0007-0051-8554 ; 0000-0003-0069-6098 ; 0000-0002-2287-4003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3022826247/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3022826247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,25753,27924,27925,37012,37013,44590,52751,52752,52753,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38189256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Segata, Nicola</contributor><creatorcontrib>Molano, Leidy-Alejandra G</creatorcontrib><creatorcontrib>Vega-Abellaneda, Sara</creatorcontrib><creatorcontrib>Manichanh, Chaysavanh</creatorcontrib><title>GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis</title><title>mSystems</title><addtitle>mSystems</addtitle><addtitle>mSystems</addtitle><description>Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular databases such as SILVA, Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). However, the inconsistency of the nomenclature across databases and the presence of shortcomings in the annotation of these databases are limiting the resolution of the analysis. To overcome these limitations, we created the GSR database (Greengenes, SILVA, and RDP database), an integrated and manually curated database for bacterial and archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this database creation pipeline includes a taxonomy unification step to ensure consistency in taxonomical annotations. The database was validated with three mock communities, two real data sets, and a 10-fold cross-validation method and compared with existing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and MetaSquare. Results showed that the GSR database enhances taxonomical annotations of 16S sequences, outperforming current 16S databases at the species level, based on the evaluation of the mock communities. This was confirmed by the 10-fold cross-validation, except for Greengenes 2. The GSR database is available for full-length 16S sequences and the most commonly used hypervariable regions: V4, V1-V3, V3-V4, and V3-V5.IMPORTANCETaxonomic assignments of microorganisms have long been hindered by inconsistent nomenclature and annotation issues in existing databases like SILVA, Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike previous approaches, our innovative pipeline includes a unique taxonomy unification step, ensuring consistent and reliable annotations. Our evaluation analyses showed that GSR-DB outperforms existing databases in providing species-level resolution, especially based on mock-community analysis, making it a game-changer for microbiome studies. Moreover, GSR-DB is designed to be accessible to researchers with limited computational resources, making it a powerful tool for scientists across the board. Available for full-length 16S sequences and commonly used hypervariable regions, including V4, V1-V3, V3-V4, and V3-V5, GSR-DB is a go-to database for robust and accurate microbial taxonomy analysis.</description><subject>16S rRNA</subject><subject>Algorithms</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Computational Biology</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Genomes</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microbiota - genetics</subject><subject>Nomenclature</subject><subject>Research Article</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Taxonomy</subject><subject>Vagina</subject><issn>2379-5077</issn><issn>2379-5077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9PFTEUxSdGIwT5AG5MEzdu5nn7b6bjxiAikhBNQHcmzX1tB_vSTh_tjPHx6R14gODCVW_bc363vTlV9ZLCglKm3sayKaOLZQHQSagZf1LtMt52tYS2ffqg3qn2S1kBAG14S1n3vNrhiqqOyWa3-nF8flZ__PCOIIk4TBjChpgp4-gswcGStB599FfzbsTfaUjRGwzE4ohLLI70KRPanJN89uWAYFwHb9IwGzFsii8vqmc9huL2b9e96vuno2-Hn-vTr8cnhwenNQolx7pD0SIVfesAEKQxRhoQRvZirphtKChpEVAgMmPtknJpqFNKSGGVWDZ8rzrZcm3ClV5nHzFvdEKvbw5SvtCYR2-C08r1vWkNWKOsmEeCiFI2lhrFoJW8m1nvt6z1tIzOGjeMGcMj6OObwf_UF-mXptCJhql2Jry5JeR0Obky6uiLcSHg4NJUNOsoVQIolbP09T_SVZryPL2iOTCmWMPENZBuVSanUrLr719DQV9nQd9lQd9kQTM-exZbD5bI_lL_Z3j18N_3Le6iwv8AacTAzw</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Molano, Leidy-Alejandra G</creator><creator>Vega-Abellaneda, Sara</creator><creator>Manichanh, Chaysavanh</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-0051-8554</orcidid><orcidid>https://orcid.org/0000-0003-0069-6098</orcidid><orcidid>https://orcid.org/0000-0002-2287-4003</orcidid></search><sort><creationdate>20240220</creationdate><title>GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis</title><author>Molano, Leidy-Alejandra G ; Vega-Abellaneda, Sara ; Manichanh, Chaysavanh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>16S rRNA</topic><topic>Algorithms</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Computational Biology</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Genomes</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microbiota - genetics</topic><topic>Nomenclature</topic><topic>Research Article</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Taxonomy</topic><topic>Vagina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molano, Leidy-Alejandra G</creatorcontrib><creatorcontrib>Vega-Abellaneda, Sara</creatorcontrib><creatorcontrib>Manichanh, Chaysavanh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>mSystems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molano, Leidy-Alejandra G</au><au>Vega-Abellaneda, Sara</au><au>Manichanh, Chaysavanh</au><au>Segata, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis</atitle><jtitle>mSystems</jtitle><stitle>mSystems</stitle><addtitle>mSystems</addtitle><date>2024-02-20</date><risdate>2024</risdate><volume>9</volume><issue>2</issue><spage>e0095023</spage><epage>e0095023</epage><pages>e0095023-e0095023</pages><issn>2379-5077</issn><eissn>2379-5077</eissn><abstract>Amplicon-based 16S ribosomal RNA sequencing remains a widely used method to profile microbial communities, especially in low biomass samples, due to its cost-effectiveness and low-complexity approach. Reference databases are a mainstay for taxonomic assignments, which typically rely on popular databases such as SILVA, Greengenes, Genome Taxonomy Database (GTDB), or Ribosomal Database Project (RDP). However, the inconsistency of the nomenclature across databases and the presence of shortcomings in the annotation of these databases are limiting the resolution of the analysis. To overcome these limitations, we created the GSR database (Greengenes, SILVA, and RDP database), an integrated and manually curated database for bacterial and archaeal 16S amplicon taxonomy analysis. Unlike previous integration approaches, this database creation pipeline includes a taxonomy unification step to ensure consistency in taxonomical annotations. The database was validated with three mock communities, two real data sets, and a 10-fold cross-validation method and compared with existing 16S databases such as Greengenes, Greengenes 2, GTDB, ITGDB, SILVA, RDP, and MetaSquare. Results showed that the GSR database enhances taxonomical annotations of 16S sequences, outperforming current 16S databases at the species level, based on the evaluation of the mock communities. This was confirmed by the 10-fold cross-validation, except for Greengenes 2. The GSR database is available for full-length 16S sequences and the most commonly used hypervariable regions: V4, V1-V3, V3-V4, and V3-V5.IMPORTANCETaxonomic assignments of microorganisms have long been hindered by inconsistent nomenclature and annotation issues in existing databases like SILVA, Greengenes, Greengenes2, Genome Taxonomy Database, or Ribosomal Database Project. To overcome these issues, we created Greengenes-SILVA-RDP database (GSR-DB), accurate and comprehensive taxonomic annotations of 16S amplicon data. Unlike previous approaches, our innovative pipeline includes a unique taxonomy unification step, ensuring consistent and reliable annotations. Our evaluation analyses showed that GSR-DB outperforms existing databases in providing species-level resolution, especially based on mock-community analysis, making it a game-changer for microbiome studies. Moreover, GSR-DB is designed to be accessible to researchers with limited computational resources, making it a powerful tool for scientists across the board. Available for full-length 16S sequences and commonly used hypervariable regions, including V4, V1-V3, V3-V4, and V3-V5, GSR-DB is a go-to database for robust and accurate microbial taxonomy analysis.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>38189256</pmid><doi>10.1128/msystems.00950-23</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0007-0051-8554</orcidid><orcidid>https://orcid.org/0000-0003-0069-6098</orcidid><orcidid>https://orcid.org/0000-0002-2287-4003</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-5077 |
ispartof | mSystems, 2024-02, Vol.9 (2), p.e0095023-e0095023 |
issn | 2379-5077 2379-5077 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8effc7c0dc8d4001aaa556d1c8207539 |
source | Open Access: PubMed Central; Publicly Available Content Database; American Society for Microbiology Journals |
subjects | 16S rRNA Algorithms Archaea - genetics Bacteria Bacteria - genetics Computational Biology Databases, Factual Datasets Genomes microbiome Microbiomes Microbiota - genetics Nomenclature Research Article RNA, Ribosomal, 16S - genetics rRNA 16S Taxonomy Vagina |
title | GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GSR-DB:%20a%20manually%20curated%20and%20optimized%20taxonomical%20database%20for%2016S%20rRNA%20amplicon%20analysis&rft.jtitle=mSystems&rft.au=Molano,%20Leidy-Alejandra%20G&rft.date=2024-02-20&rft.volume=9&rft.issue=2&rft.spage=e0095023&rft.epage=e0095023&rft.pages=e0095023-e0095023&rft.issn=2379-5077&rft.eissn=2379-5077&rft_id=info:doi/10.1128/msystems.00950-23&rft_dat=%3Cproquest_doaj_%3E3022826247%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a485t-9a47a14f7e00a05ccc5c04c5f4cc52d61085da0a4aa2cddb135c1e88454d84b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3022826247&rft_id=info:pmid/38189256&rfr_iscdi=true |