Loading…
VB-Net: Voxel-Based Broad Learning Network for 3D Object Classification
Point clouds have been widely used in three-dimensional (3D) object classification tasks, i.e., people recognition in unmanned ground vehicles. However, the irregular data format of point clouds and the large number of parameters in deep learning networks affect the performance of object classificat...
Saved in:
Published in: | Applied sciences 2020-10, Vol.10 (19), p.6735 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Point clouds have been widely used in three-dimensional (3D) object classification tasks, i.e., people recognition in unmanned ground vehicles. However, the irregular data format of point clouds and the large number of parameters in deep learning networks affect the performance of object classification. This paper develops a 3D object classification system using a broad learning system (BLS) with a feature extractor called VB-Net. First, raw point clouds are voxelized into voxels. Through this step, irregular point clouds are converted into regular voxels which are easily processed by the feature extractor. Then, a pre-trained VoxNet is employed as a feature extractor to extract features from voxels. Finally, those features are used for object classification by the applied BLS. The proposed system is tested on the ModelNet40 dataset and ModelNet10 dataset. The average recognition accuracy was 83.99% and 90.08%, respectively. Compared to deep learning networks, the time consumption of the proposed system is significantly decreased. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10196735 |