Loading…
Use of Optical and Radar Imagery for Crop Type Classification in Africa: A Review
Multi-source remote sensing-derived information on crops contributes significantly to agricultural monitoring, assessment, and management. In Africa, some challenges (i.e., small-scale farming practices associated with diverse crop types and agricultural system complexity, and cloud coverage during...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-06, Vol.24 (11), p.3618 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-source remote sensing-derived information on crops contributes significantly to agricultural monitoring, assessment, and management. In Africa, some challenges (i.e., small-scale farming practices associated with diverse crop types and agricultural system complexity, and cloud coverage during the growing season) can imped agricultural monitoring using multi-source remote sensing. The combination of optical remote sensing and synthetic aperture radar (SAR) data has emerged as an opportune strategy for improving the precision and reliability of crop type mapping and monitoring. This work aims to conduct an extensive review of the challenges of agricultural monitoring and mapping in Africa in great detail as well as the current research progress of agricultural monitoring based on optical and Radar satellites. In this context optical data may provide high spatial resolution and detailed spectral information, which allows for the differentiation of different crop types based on their spectral signatures. However, synthetic aperture radar (SAR) satellites can provide important contributions given the ability of this technology to penetrate cloud cover, particularly in African tropical regions, as opposed to optical data. This review explores various combination techniques employed to integrate optical and SAR data for crop type classification and their applicability and limitations in the context of African countries. Furthermore, challenges are discussed in this review as well as and the limitations associated with optical and SAR data combination, such as the data availability, sensor compatibility, and the need for accurate ground truth data for model training and validation. This study also highlights the potential of advanced modelling (i.e., machine learning algorithms, such as support vector machines, random forests, and convolutional neural networks) in improving the accuracy and automation of crop type classification using combined data. Finally, this review concludes with future research directions and recommendations for utilizing optical and SAR data combination techniques in crop type classification for African agricultural systems. Furthermore, it emphasizes the importance of developing robust and scalable classification models that can accommodate the diversity of crop types, farming practices, and environmental conditions prevalent in Africa. Through the utilization of combined remote sensing technologies, informed decisions can be made to |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24113618 |