Loading…

Intraspinal Transplantation of CD34+ Human Umbilical Cord Blood Cells after Spinal Cord Hemisection Injury Improves Functional Recovery in Adult Rats

The present study was designed to compare the functional outcome of the intraspinal transplantation of CD34+ human umbilical cord blood (CB) cells with that of human bone marrow stromal (BMS) cells in adult rats with spinal cord injury. Sixty adult Wistar rats were subjected to left spinal cord hemi...

Full description

Saved in:
Bibliographic Details
Published in:Cell transplantation 2004-03, Vol.13 (2), p.113-122
Main Authors: Zhao, Zong Mao, Li, Hong Jun, Liu, Hai Ying, Lu, Shi Hong, Yang, Ren Chi, Zhang, Qing Jun, Han, Zhong Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was designed to compare the functional outcome of the intraspinal transplantation of CD34+ human umbilical cord blood (CB) cells with that of human bone marrow stromal (BMS) cells in adult rats with spinal cord injury. Sixty adult Wistar rats were subjected to left spinal cord hemisection, and then divided into three groups randomly. The control group received an injection of PBS without cells, while the two other groups of rats received a transplantation of 5 Ă— 105 CD34+ CB or BMS cells, respectively. Functional outcome was measured using the modified Tarlov score at days 1, 7, 14, 21, and 28 after transplantation. A statistically significant improvement in functional outcome and survival rate in the experimental groups of rats was observed compared with the control group. Rats that received CD34+ CB cells achieved a better improvement in functional score than those that received BMS cells at days 7 and 14 after transplantation. Histological evaluation revealed that bromodeoxyuridine (BrdU)-labeled CD34+ CB and BMS cells survived and migrated into the injured area. Some of these cells expressed glial fibriliary acidic protein (GFAP) or neuronal nuclear antigen (NeuN). Our data demonstrate for the first time that intraspinal transplantation of human CD34+ CB cells provides benefit in function recovery after spinal cord hemisection in rats and suggest that CD34+ CB cells may be an excellent choice of cells as routine starting material of allogenic and autologous transplantations for the treatment of spinal cord injury.
ISSN:0963-6897
1555-3892
DOI:10.3727/000000004773301780