Loading…

Axial wall angulation for rotational resistance in a theoretical‐maxillary premolar model

Objectives The aim of this study was to determine the influence of short base lengths and supplemental grooves on surface area and rotational resistance in a simulated‐maxillary premolar. Materials and Methods Trigonometric calculations were done to determine the total surface area with and without...

Full description

Saved in:
Bibliographic Details
Published in:Clinical and experimental dental research 2019-12, Vol.5 (6), p.638-647
Main Authors: Bowley, John F., Lee, Po, Lai, Wen‐Fu Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5329-c1bc9f32c7516205f035a3833b6e3de86170350442279c74b8e288539ef1efde3
cites cdi_FETCH-LOGICAL-c5329-c1bc9f32c7516205f035a3833b6e3de86170350442279c74b8e288539ef1efde3
container_end_page 647
container_issue 6
container_start_page 638
container_title Clinical and experimental dental research
container_volume 5
creator Bowley, John F.
Lee, Po
Lai, Wen‐Fu Thomas
description Objectives The aim of this study was to determine the influence of short base lengths and supplemental grooves on surface area and rotational resistance in a simulated‐maxillary premolar. Materials and Methods Trigonometric calculations were done to determine the total surface area with and without supplemental grooves. Additional computations were done to determine the maximum wall angle needed to resist rotation displacement in a premolar‐sized model. Wall heights of 3.0, 4.0, and 5.0 mm were used in the surface area and rotational axis computations. The rotational axis was located on the lingual restoration margin to produce a buccal‐to‐lingual rotational displacement. Results Total surface area decreased with increasing four‐wall taper levels from 2° to 18° and decreasing preparation heights from 5 to 3 mm. Significant surface area improvements were found with the supplemental use of mesial and distal axial grooves compared with the same condition without grooves in all taper levels and preparation height categories. Resistance to rotational displacement was determined to occur at only at very low levels of opposing wall taper angles. The use of supplemental grooves on mesial and distal axial walls significantly improved both total surface area and rotational resistance. Conclusions The vertical wall taper angles, preparation heights, and supplemental grooves play a role in resistance form and restoration stability.
doi_str_mv 10.1002/cre2.229
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8f830338fb244571af2f8b11232c16e8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8f830338fb244571af2f8b11232c16e8</doaj_id><sourcerecordid>2330806685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5329-c1bc9f32c7516205f035a3833b6e3de86170350442279c74b8e288539ef1efde3</originalsourceid><addsrcrecordid>eNp9klFrFDEQx4MotpwFP4Es-OLL1iSzyWZfhHJULRQE0ScfQjY3uebIbs5k17ZvfgQ_o5_EXK_WVtCnTGZ-_Oc_wxDynNFjRil_bRPyY867R-SQU9HWDTTt43vxATnKeUMpZZJS6OApOQCmOgqUHpIvJ1fehOrShFCZcT0HM_k4Vi6mKsXp5lPKCbPPkxktVn6sTDVdYEw4eWvCz-8_BnPlQzDputomHGKJqiGuMDwjT5wJGY9u3wX5_Pb00_J9ff7h3dny5Ly2AnhXW9bbzgG3rWCyuHYUhAEF0EuEFSrJ2pKhTcN529m26RVypQR06Bi6FcKCnO11V9Fs9Db5oXjR0Xh9k4hprU0qZgNq5RRQAOV63jSiZcZxp3rGeGnPJKqi9WavtZ37AVcWxymZ8ED0YWX0F3odv2nZQQNluwvy6lYgxa8z5kkPPlss-xkxzllzgN2UXLUFffkXuolzKvsulGikkMCo-C8FQBWVUok_bW2KOSd0d5YZ1bsz0bsz0eVMCvri_oh34O-jKEC9By59wOt_Cunlx1O-E_wFHurFcg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2330806685</pqid></control><display><type>article</type><title>Axial wall angulation for rotational resistance in a theoretical‐maxillary premolar model</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><source>PubMed Central</source><creator>Bowley, John F. ; Lee, Po ; Lai, Wen‐Fu Thomas</creator><creatorcontrib>Bowley, John F. ; Lee, Po ; Lai, Wen‐Fu Thomas</creatorcontrib><description>Objectives The aim of this study was to determine the influence of short base lengths and supplemental grooves on surface area and rotational resistance in a simulated‐maxillary premolar. Materials and Methods Trigonometric calculations were done to determine the total surface area with and without supplemental grooves. Additional computations were done to determine the maximum wall angle needed to resist rotation displacement in a premolar‐sized model. Wall heights of 3.0, 4.0, and 5.0 mm were used in the surface area and rotational axis computations. The rotational axis was located on the lingual restoration margin to produce a buccal‐to‐lingual rotational displacement. Results Total surface area decreased with increasing four‐wall taper levels from 2° to 18° and decreasing preparation heights from 5 to 3 mm. Significant surface area improvements were found with the supplemental use of mesial and distal axial grooves compared with the same condition without grooves in all taper levels and preparation height categories. Resistance to rotational displacement was determined to occur at only at very low levels of opposing wall taper angles. The use of supplemental grooves on mesial and distal axial walls significantly improved both total surface area and rotational resistance. Conclusions The vertical wall taper angles, preparation heights, and supplemental grooves play a role in resistance form and restoration stability.</description><identifier>ISSN: 2057-4347</identifier><identifier>EISSN: 2057-4347</identifier><identifier>DOI: 10.1002/cre2.229</identifier><identifier>PMID: 31890300</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Dental research ; fixed restoration stability ; Original ; premolar‐sized tooth model ; preparation surface area ; rotational resistance form ; supplemental groove ; Teeth</subject><ispartof>Clinical and experimental dental research, 2019-12, Vol.5 (6), p.638-647</ispartof><rights>2019 The Authors. Clinical and Experimental Dental Research published by John Wiley &amp; Sons Ltd.</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5329-c1bc9f32c7516205f035a3833b6e3de86170350442279c74b8e288539ef1efde3</citedby><cites>FETCH-LOGICAL-c5329-c1bc9f32c7516205f035a3833b6e3de86170350442279c74b8e288539ef1efde3</cites><orcidid>0000-0002-6095-4995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2546563105/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2546563105?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31890300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bowley, John F.</creatorcontrib><creatorcontrib>Lee, Po</creatorcontrib><creatorcontrib>Lai, Wen‐Fu Thomas</creatorcontrib><title>Axial wall angulation for rotational resistance in a theoretical‐maxillary premolar model</title><title>Clinical and experimental dental research</title><addtitle>Clin Exp Dent Res</addtitle><description>Objectives The aim of this study was to determine the influence of short base lengths and supplemental grooves on surface area and rotational resistance in a simulated‐maxillary premolar. Materials and Methods Trigonometric calculations were done to determine the total surface area with and without supplemental grooves. Additional computations were done to determine the maximum wall angle needed to resist rotation displacement in a premolar‐sized model. Wall heights of 3.0, 4.0, and 5.0 mm were used in the surface area and rotational axis computations. The rotational axis was located on the lingual restoration margin to produce a buccal‐to‐lingual rotational displacement. Results Total surface area decreased with increasing four‐wall taper levels from 2° to 18° and decreasing preparation heights from 5 to 3 mm. Significant surface area improvements were found with the supplemental use of mesial and distal axial grooves compared with the same condition without grooves in all taper levels and preparation height categories. Resistance to rotational displacement was determined to occur at only at very low levels of opposing wall taper angles. The use of supplemental grooves on mesial and distal axial walls significantly improved both total surface area and rotational resistance. Conclusions The vertical wall taper angles, preparation heights, and supplemental grooves play a role in resistance form and restoration stability.</description><subject>Dental research</subject><subject>fixed restoration stability</subject><subject>Original</subject><subject>premolar‐sized tooth model</subject><subject>preparation surface area</subject><subject>rotational resistance form</subject><subject>supplemental groove</subject><subject>Teeth</subject><issn>2057-4347</issn><issn>2057-4347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9klFrFDEQx4MotpwFP4Es-OLL1iSzyWZfhHJULRQE0ScfQjY3uebIbs5k17ZvfgQ_o5_EXK_WVtCnTGZ-_Oc_wxDynNFjRil_bRPyY867R-SQU9HWDTTt43vxATnKeUMpZZJS6OApOQCmOgqUHpIvJ1fehOrShFCZcT0HM_k4Vi6mKsXp5lPKCbPPkxktVn6sTDVdYEw4eWvCz-8_BnPlQzDputomHGKJqiGuMDwjT5wJGY9u3wX5_Pb00_J9ff7h3dny5Ly2AnhXW9bbzgG3rWCyuHYUhAEF0EuEFSrJ2pKhTcN529m26RVypQR06Bi6FcKCnO11V9Fs9Db5oXjR0Xh9k4hprU0qZgNq5RRQAOV63jSiZcZxp3rGeGnPJKqi9WavtZ37AVcWxymZ8ED0YWX0F3odv2nZQQNluwvy6lYgxa8z5kkPPlss-xkxzllzgN2UXLUFffkXuolzKvsulGikkMCo-C8FQBWVUok_bW2KOSd0d5YZ1bsz0bsz0eVMCvri_oh34O-jKEC9By59wOt_Cunlx1O-E_wFHurFcg</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Bowley, John F.</creator><creator>Lee, Po</creator><creator>Lai, Wen‐Fu Thomas</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6095-4995</orcidid></search><sort><creationdate>201912</creationdate><title>Axial wall angulation for rotational resistance in a theoretical‐maxillary premolar model</title><author>Bowley, John F. ; Lee, Po ; Lai, Wen‐Fu Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5329-c1bc9f32c7516205f035a3833b6e3de86170350442279c74b8e288539ef1efde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dental research</topic><topic>fixed restoration stability</topic><topic>Original</topic><topic>premolar‐sized tooth model</topic><topic>preparation surface area</topic><topic>rotational resistance form</topic><topic>supplemental groove</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowley, John F.</creatorcontrib><creatorcontrib>Lee, Po</creatorcontrib><creatorcontrib>Lai, Wen‐Fu Thomas</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Clinical and experimental dental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowley, John F.</au><au>Lee, Po</au><au>Lai, Wen‐Fu Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axial wall angulation for rotational resistance in a theoretical‐maxillary premolar model</atitle><jtitle>Clinical and experimental dental research</jtitle><addtitle>Clin Exp Dent Res</addtitle><date>2019-12</date><risdate>2019</risdate><volume>5</volume><issue>6</issue><spage>638</spage><epage>647</epage><pages>638-647</pages><issn>2057-4347</issn><eissn>2057-4347</eissn><abstract>Objectives The aim of this study was to determine the influence of short base lengths and supplemental grooves on surface area and rotational resistance in a simulated‐maxillary premolar. Materials and Methods Trigonometric calculations were done to determine the total surface area with and without supplemental grooves. Additional computations were done to determine the maximum wall angle needed to resist rotation displacement in a premolar‐sized model. Wall heights of 3.0, 4.0, and 5.0 mm were used in the surface area and rotational axis computations. The rotational axis was located on the lingual restoration margin to produce a buccal‐to‐lingual rotational displacement. Results Total surface area decreased with increasing four‐wall taper levels from 2° to 18° and decreasing preparation heights from 5 to 3 mm. Significant surface area improvements were found with the supplemental use of mesial and distal axial grooves compared with the same condition without grooves in all taper levels and preparation height categories. Resistance to rotational displacement was determined to occur at only at very low levels of opposing wall taper angles. The use of supplemental grooves on mesial and distal axial walls significantly improved both total surface area and rotational resistance. Conclusions The vertical wall taper angles, preparation heights, and supplemental grooves play a role in resistance form and restoration stability.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31890300</pmid><doi>10.1002/cre2.229</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6095-4995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-4347
ispartof Clinical and experimental dental research, 2019-12, Vol.5 (6), p.638-647
issn 2057-4347
2057-4347
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8f830338fb244571af2f8b11232c16e8
source Publicly Available Content Database; Wiley Open Access; PubMed Central
subjects Dental research
fixed restoration stability
Original
premolar‐sized tooth model
preparation surface area
rotational resistance form
supplemental groove
Teeth
title Axial wall angulation for rotational resistance in a theoretical‐maxillary premolar model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axial%20wall%20angulation%20for%20rotational%20resistance%20in%20a%20theoretical%E2%80%90maxillary%20premolar%20model&rft.jtitle=Clinical%20and%20experimental%20dental%20research&rft.au=Bowley,%20John%20F.&rft.date=2019-12&rft.volume=5&rft.issue=6&rft.spage=638&rft.epage=647&rft.pages=638-647&rft.issn=2057-4347&rft.eissn=2057-4347&rft_id=info:doi/10.1002/cre2.229&rft_dat=%3Cproquest_doaj_%3E2330806685%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5329-c1bc9f32c7516205f035a3833b6e3de86170350442279c74b8e288539ef1efde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2330806685&rft_id=info:pmid/31890300&rfr_iscdi=true