Loading…
Antiamoebic Properties of Metabolites against Naegleria fowleri and Balamuthia mandrillaris
and are free-living, opportunistic protists, distributed widely in the environment. They are responsible for primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE), the fatal central nervous infections with mortality rates exceeding 90%. With the rise of global warmin...
Saved in:
Published in: | Antibiotics (Basel) 2022-04, Vol.11 (5), p.539 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | and
are free-living, opportunistic protists, distributed widely in the environment. They are responsible for primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE), the fatal central nervous infections with mortality rates exceeding 90%. With the rise of global warming and water shortages resulting in water storage in tanks (where these amoebae may reside), the risk of infection is increasing. Currently, as a result of a lack of awareness, many cases may be misdiagnosed. Furthermore, the high mortality rate indicates the lack of effective drugs available. In this study, secondary metabolites from the plants
and
were tested for their anti-amoebic properties against
and
Three of the nine compounds showed potent and significant anti-amoebic activities against both
and
: ursolic acid, betulinic acid, and betulin. Additionally, all compounds depicted limited or minimal toxicity to human cells and were capable of reducing amoeba-mediated host cell death. Moreover, the minimum inhibitory concentration required to inhibit 50% of amoebae growth, the half-maximal effective concentration, and the maximum non-toxic dose against human cells of the compounds were determined. These effective plant-derived compounds should be utilized as potential therapies against infections due to free-living amoebae, but future research is needed to realize these expectations. |
---|---|
ISSN: | 2079-6382 2079-6382 |
DOI: | 10.3390/antibiotics11050539 |