Loading…
Decoherence-Induced Sudden Death of Entanglement and Bell Nonlocality
Decoherence due to the unwanted interaction between a quantum system and environment leads to the degradation of quantum coherence. In particular, for an entangled state, decoherence makes a loss of entanglement and Bell nonlocality known as entanglement sudden death (ESD), and Bell nonlocality sudd...
Saved in:
Published in: | Photonics 2022-02, Vol.9 (2), p.58 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Decoherence due to the unwanted interaction between a quantum system and environment leads to the degradation of quantum coherence. In particular, for an entangled state, decoherence makes a loss of entanglement and Bell nonlocality known as entanglement sudden death (ESD), and Bell nonlocality sudden death (BNSD). Here, we theoretically investigate the entanglement and Bell nonlocality of a bipartite entangled state under three types of decoherence, amplitude damping, phase damping, and depolarizing. Our result provides the bound of decoherence strength that does not lose the entanglement and Bell nonlocality. In addition, we find two interesting features. One is that the entanglement can survive even though one of the entangled qubits is affected by a large strength of decoherence if the other qubit is affected by a small enough strength of decoherence except for the depolarizing. The second one is that when a specific form of entangled state is under amplitude damping, the Bell nonlocality shows an asymmetric behavior respect to the decoherence strengths on each qubit. Our work provides comprehensive information on ESD and BNSD for the bipartite entangled state which will be useful to implement quantum information processing in the presence of decoherence. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics9020058 |