Loading…
Increasing access to microfluidics for studying fungi and other branched biological structures
Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex...
Saved in:
Published in: | Fungal biology and biotechnology 2019-06, Vol.6 (1), p.1-14, Article 8 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414z-981753ad835d0ff3fe650b333da1b43b7d6b891227ab7d357800d831ff6456563 |
---|---|
cites | cdi_FETCH-LOGICAL-c414z-981753ad835d0ff3fe650b333da1b43b7d6b891227ab7d357800d831ff6456563 |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 1 |
container_title | Fungal biology and biotechnology |
container_volume | 6 |
creator | Millet, Larry J Aufrecht, Jayde Labbé, Jessy Uehling, Jessie Vilgalys, Rytas Estes, Myka L Miquel Guennoc, Cora Deveau, Aurélie Olsson, Stefan Bonito, Gregory Doktycz, Mitchel J Retterer, Scott T |
description | Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses. Studying growing branched structures and the dynamics of cellular interactions with both biotic and abiotic cues provides context for molecule production and genetic manipulations. To make progress in this arena, technical and logistical barriers must be overcome to more effectively deploy microfluidics in biological disciplines. A principle technical barrier is the process of assembling, sterilizing, and hydrating the microfluidic system; the lack of the necessary equipment for the preparatory process is a contributing factor to this barrier. To improve access to microfluidic systems, we present the development, characterization, and implementation of a microfluidics assembly and packaging process that builds on self-priming point-of-care principles to achieve "ready-to-use microfluidics."
We present results from domestic and international collaborations using novel microfluidic architectures prepared with a unique packaging protocol. We implement this approach by focusing primarily on filamentous fungi; we also demonstrate the utility of this approach for collaborations on plants and neurons. In this work we (1) determine the shelf-life of ready-to-use microfluidics, (2) demonstrate biofilm-like colonization on fungi, (3) describe bacterial motility on fungal hyphae (fungal highway), (4) report material-dependent bacterial-fungal colonization, (5) demonstrate germination of vacuum-sealed
seeds in microfluidics stored for up to 2 weeks, and (6) observe bidirectional cytoplasmic streaming in fungi.
This pre-packaging approach provides a simple, one step process to initiate microfluidics in any setting for fungal studies, bacteria-fungal interactions, and other biological inquiries. This process improves access to microfluidics for controlling biological microenvironments, and further enabling visual and quantitative analysis of fungal cultures. |
doi_str_mv | 10.1186/s40694-019-0071-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8fa8ae9bde734a0dbe83d3e05327f99a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8fa8ae9bde734a0dbe83d3e05327f99a</doaj_id><sourcerecordid>2242813367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414z-981753ad835d0ff3fe650b333da1b43b7d6b891227ab7d357800d831ff6456563</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXpD-CCIrjAITDO2LF9rCpoV1qJC1yxHH_sepWNi50gdX89TlMq4OTR6JnX8_FW1WsCHwkR3adMoZO0ASIbAE6a07PqvAVGGwTBnv8Vn1WXOR8AgFBJGeMvqzMkRArGxXn1YzOa5HQO467Wxric6ynWx2BS9MMcbDC59jHVeZrt_QL5edyFWo-2jtPepbpPejR7Z-s-xCHugtFDgdNspjm5_Kp64fWQ3eXje1F9__L52_Vts_16s7m-2jaGEnpqpCCcobYCmQXv0buOQY-IVpOeYs9t1wtJ2pbrEmPpHKDAxPuOso51eFFtVl0b9UHdpXDU6V5FHdRDIqad0mkKZnBKeC20k711HKkG2zuBFh0wbLmXUhett6tWzFNQ2YTJmb2J4-jMpAhrBadQoA8rtNfDP__dXm3VkoNWoixT_SKFfb-ydyn-nF2e1DFk44ZBjy7OWbUtbQVB7HhB3_2HHuKcxrK6hULAsqZlWrJS5Uo5J-efOiCgFnOo1RyqmEMt5lCnUvPmUXnuj84-VfyxAv4GTL2zJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243037536</pqid></control><display><type>article</type><title>Increasing access to microfluidics for studying fungi and other branched biological structures</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Millet, Larry J ; Aufrecht, Jayde ; Labbé, Jessy ; Uehling, Jessie ; Vilgalys, Rytas ; Estes, Myka L ; Miquel Guennoc, Cora ; Deveau, Aurélie ; Olsson, Stefan ; Bonito, Gregory ; Doktycz, Mitchel J ; Retterer, Scott T</creator><creatorcontrib>Millet, Larry J ; Aufrecht, Jayde ; Labbé, Jessy ; Uehling, Jessie ; Vilgalys, Rytas ; Estes, Myka L ; Miquel Guennoc, Cora ; Deveau, Aurélie ; Olsson, Stefan ; Bonito, Gregory ; Doktycz, Mitchel J ; Retterer, Scott T ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses. Studying growing branched structures and the dynamics of cellular interactions with both biotic and abiotic cues provides context for molecule production and genetic manipulations. To make progress in this arena, technical and logistical barriers must be overcome to more effectively deploy microfluidics in biological disciplines. A principle technical barrier is the process of assembling, sterilizing, and hydrating the microfluidic system; the lack of the necessary equipment for the preparatory process is a contributing factor to this barrier. To improve access to microfluidic systems, we present the development, characterization, and implementation of a microfluidics assembly and packaging process that builds on self-priming point-of-care principles to achieve "ready-to-use microfluidics."
We present results from domestic and international collaborations using novel microfluidic architectures prepared with a unique packaging protocol. We implement this approach by focusing primarily on filamentous fungi; we also demonstrate the utility of this approach for collaborations on plants and neurons. In this work we (1) determine the shelf-life of ready-to-use microfluidics, (2) demonstrate biofilm-like colonization on fungi, (3) describe bacterial motility on fungal hyphae (fungal highway), (4) report material-dependent bacterial-fungal colonization, (5) demonstrate germination of vacuum-sealed
seeds in microfluidics stored for up to 2 weeks, and (6) observe bidirectional cytoplasmic streaming in fungi.
This pre-packaging approach provides a simple, one step process to initiate microfluidics in any setting for fungal studies, bacteria-fungal interactions, and other biological inquiries. This process improves access to microfluidics for controlling biological microenvironments, and further enabling visual and quantitative analysis of fungal cultures.</description><identifier>ISSN: 2054-3085</identifier><identifier>EISSN: 2054-3085</identifier><identifier>DOI: 10.1186/s40694-019-0071-z</identifier><identifier>PMID: 31198578</identifier><language>eng</language><publisher>England: BioMed Central</publisher><subject>Access control ; Arabidopsis ; Assembling ; Bacteria ; Bacterial-fungal interactions ; Bacteriology ; BASIC BIOLOGICAL SCIENCES ; Biofilms ; Biological activity ; Biology ; Cell culture ; Cellular structure ; Colonization ; Cytoplasmic streaming ; Design ; Dynamic structural analysis ; Ecology, environment ; Fermentation ; Fungi ; Germination ; Hyphae ; Image resolution ; Life Sciences ; Microbiology and Parasitology ; Microenvironments ; Microfluidics ; Mycology ; Packaging ; Plant root ; Priming ; Quantitative analysis ; Seeds ; Shelf life ; Symbiosis ; Vacuum</subject><ispartof>Fungal biology and biotechnology, 2019-06, Vol.6 (1), p.1-14, Article 8</ispartof><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414z-981753ad835d0ff3fe650b333da1b43b7d6b891227ab7d357800d831ff6456563</citedby><cites>FETCH-LOGICAL-c414z-981753ad835d0ff3fe650b333da1b43b7d6b891227ab7d357800d831ff6456563</cites><orcidid>0000-0003-4856-8343 ; 0000-0001-8534-1979 ; 0000-0001-6443-2505 ; 0000-0003-0368-2054 ; 0000-0001-6266-5241 ; 0000000185341979 ; 0000000303682054 ; 0000000348568343 ; 0000000164432505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2243037536?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25733,27903,27904,36991,36992,44569</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31198578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02939175$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1528740$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Millet, Larry J</creatorcontrib><creatorcontrib>Aufrecht, Jayde</creatorcontrib><creatorcontrib>Labbé, Jessy</creatorcontrib><creatorcontrib>Uehling, Jessie</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Estes, Myka L</creatorcontrib><creatorcontrib>Miquel Guennoc, Cora</creatorcontrib><creatorcontrib>Deveau, Aurélie</creatorcontrib><creatorcontrib>Olsson, Stefan</creatorcontrib><creatorcontrib>Bonito, Gregory</creatorcontrib><creatorcontrib>Doktycz, Mitchel J</creatorcontrib><creatorcontrib>Retterer, Scott T</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Increasing access to microfluidics for studying fungi and other branched biological structures</title><title>Fungal biology and biotechnology</title><addtitle>Fungal Biol Biotechnol</addtitle><description>Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses. Studying growing branched structures and the dynamics of cellular interactions with both biotic and abiotic cues provides context for molecule production and genetic manipulations. To make progress in this arena, technical and logistical barriers must be overcome to more effectively deploy microfluidics in biological disciplines. A principle technical barrier is the process of assembling, sterilizing, and hydrating the microfluidic system; the lack of the necessary equipment for the preparatory process is a contributing factor to this barrier. To improve access to microfluidic systems, we present the development, characterization, and implementation of a microfluidics assembly and packaging process that builds on self-priming point-of-care principles to achieve "ready-to-use microfluidics."
We present results from domestic and international collaborations using novel microfluidic architectures prepared with a unique packaging protocol. We implement this approach by focusing primarily on filamentous fungi; we also demonstrate the utility of this approach for collaborations on plants and neurons. In this work we (1) determine the shelf-life of ready-to-use microfluidics, (2) demonstrate biofilm-like colonization on fungi, (3) describe bacterial motility on fungal hyphae (fungal highway), (4) report material-dependent bacterial-fungal colonization, (5) demonstrate germination of vacuum-sealed
seeds in microfluidics stored for up to 2 weeks, and (6) observe bidirectional cytoplasmic streaming in fungi.
This pre-packaging approach provides a simple, one step process to initiate microfluidics in any setting for fungal studies, bacteria-fungal interactions, and other biological inquiries. This process improves access to microfluidics for controlling biological microenvironments, and further enabling visual and quantitative analysis of fungal cultures.</description><subject>Access control</subject><subject>Arabidopsis</subject><subject>Assembling</subject><subject>Bacteria</subject><subject>Bacterial-fungal interactions</subject><subject>Bacteriology</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biofilms</subject><subject>Biological activity</subject><subject>Biology</subject><subject>Cell culture</subject><subject>Cellular structure</subject><subject>Colonization</subject><subject>Cytoplasmic streaming</subject><subject>Design</subject><subject>Dynamic structural analysis</subject><subject>Ecology, environment</subject><subject>Fermentation</subject><subject>Fungi</subject><subject>Germination</subject><subject>Hyphae</subject><subject>Image resolution</subject><subject>Life Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Microenvironments</subject><subject>Microfluidics</subject><subject>Mycology</subject><subject>Packaging</subject><subject>Plant root</subject><subject>Priming</subject><subject>Quantitative analysis</subject><subject>Seeds</subject><subject>Shelf life</subject><subject>Symbiosis</subject><subject>Vacuum</subject><issn>2054-3085</issn><issn>2054-3085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEolXpD-CCIrjAITDO2LF9rCpoV1qJC1yxHH_sepWNi50gdX89TlMq4OTR6JnX8_FW1WsCHwkR3adMoZO0ASIbAE6a07PqvAVGGwTBnv8Vn1WXOR8AgFBJGeMvqzMkRArGxXn1YzOa5HQO467Wxric6ynWx2BS9MMcbDC59jHVeZrt_QL5edyFWo-2jtPepbpPejR7Z-s-xCHugtFDgdNspjm5_Kp64fWQ3eXje1F9__L52_Vts_16s7m-2jaGEnpqpCCcobYCmQXv0buOQY-IVpOeYs9t1wtJ2pbrEmPpHKDAxPuOso51eFFtVl0b9UHdpXDU6V5FHdRDIqad0mkKZnBKeC20k711HKkG2zuBFh0wbLmXUhett6tWzFNQ2YTJmb2J4-jMpAhrBadQoA8rtNfDP__dXm3VkoNWoixT_SKFfb-ydyn-nF2e1DFk44ZBjy7OWbUtbQVB7HhB3_2HHuKcxrK6hULAsqZlWrJS5Uo5J-efOiCgFnOo1RyqmEMt5lCnUvPmUXnuj84-VfyxAv4GTL2zJA</recordid><startdate>20190610</startdate><enddate>20190610</enddate><creator>Millet, Larry J</creator><creator>Aufrecht, Jayde</creator><creator>Labbé, Jessy</creator><creator>Uehling, Jessie</creator><creator>Vilgalys, Rytas</creator><creator>Estes, Myka L</creator><creator>Miquel Guennoc, Cora</creator><creator>Deveau, Aurélie</creator><creator>Olsson, Stefan</creator><creator>Bonito, Gregory</creator><creator>Doktycz, Mitchel J</creator><creator>Retterer, Scott T</creator><general>BioMed Central</general><general>Biomed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4856-8343</orcidid><orcidid>https://orcid.org/0000-0001-8534-1979</orcidid><orcidid>https://orcid.org/0000-0001-6443-2505</orcidid><orcidid>https://orcid.org/0000-0003-0368-2054</orcidid><orcidid>https://orcid.org/0000-0001-6266-5241</orcidid><orcidid>https://orcid.org/0000000185341979</orcidid><orcidid>https://orcid.org/0000000303682054</orcidid><orcidid>https://orcid.org/0000000348568343</orcidid><orcidid>https://orcid.org/0000000164432505</orcidid></search><sort><creationdate>20190610</creationdate><title>Increasing access to microfluidics for studying fungi and other branched biological structures</title><author>Millet, Larry J ; Aufrecht, Jayde ; Labbé, Jessy ; Uehling, Jessie ; Vilgalys, Rytas ; Estes, Myka L ; Miquel Guennoc, Cora ; Deveau, Aurélie ; Olsson, Stefan ; Bonito, Gregory ; Doktycz, Mitchel J ; Retterer, Scott T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414z-981753ad835d0ff3fe650b333da1b43b7d6b891227ab7d357800d831ff6456563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Access control</topic><topic>Arabidopsis</topic><topic>Assembling</topic><topic>Bacteria</topic><topic>Bacterial-fungal interactions</topic><topic>Bacteriology</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biofilms</topic><topic>Biological activity</topic><topic>Biology</topic><topic>Cell culture</topic><topic>Cellular structure</topic><topic>Colonization</topic><topic>Cytoplasmic streaming</topic><topic>Design</topic><topic>Dynamic structural analysis</topic><topic>Ecology, environment</topic><topic>Fermentation</topic><topic>Fungi</topic><topic>Germination</topic><topic>Hyphae</topic><topic>Image resolution</topic><topic>Life Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Microenvironments</topic><topic>Microfluidics</topic><topic>Mycology</topic><topic>Packaging</topic><topic>Plant root</topic><topic>Priming</topic><topic>Quantitative analysis</topic><topic>Seeds</topic><topic>Shelf life</topic><topic>Symbiosis</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millet, Larry J</creatorcontrib><creatorcontrib>Aufrecht, Jayde</creatorcontrib><creatorcontrib>Labbé, Jessy</creatorcontrib><creatorcontrib>Uehling, Jessie</creatorcontrib><creatorcontrib>Vilgalys, Rytas</creatorcontrib><creatorcontrib>Estes, Myka L</creatorcontrib><creatorcontrib>Miquel Guennoc, Cora</creatorcontrib><creatorcontrib>Deveau, Aurélie</creatorcontrib><creatorcontrib>Olsson, Stefan</creatorcontrib><creatorcontrib>Bonito, Gregory</creatorcontrib><creatorcontrib>Doktycz, Mitchel J</creatorcontrib><creatorcontrib>Retterer, Scott T</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fungal biology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millet, Larry J</au><au>Aufrecht, Jayde</au><au>Labbé, Jessy</au><au>Uehling, Jessie</au><au>Vilgalys, Rytas</au><au>Estes, Myka L</au><au>Miquel Guennoc, Cora</au><au>Deveau, Aurélie</au><au>Olsson, Stefan</au><au>Bonito, Gregory</au><au>Doktycz, Mitchel J</au><au>Retterer, Scott T</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing access to microfluidics for studying fungi and other branched biological structures</atitle><jtitle>Fungal biology and biotechnology</jtitle><addtitle>Fungal Biol Biotechnol</addtitle><date>2019-06-10</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>8</artnum><issn>2054-3085</issn><eissn>2054-3085</eissn><abstract>Microfluidic systems are well-suited for studying mixed biological communities for improving industrial processes of fermentation, biofuel production, and pharmaceutical production. The results of which have the potential to resolve the underlying mechanisms of growth and transport in these complex branched living systems. Microfluidics provide controlled environments and improved optical access for real-time and high-resolution imaging studies that allow high-content and quantitative analyses. Studying growing branched structures and the dynamics of cellular interactions with both biotic and abiotic cues provides context for molecule production and genetic manipulations. To make progress in this arena, technical and logistical barriers must be overcome to more effectively deploy microfluidics in biological disciplines. A principle technical barrier is the process of assembling, sterilizing, and hydrating the microfluidic system; the lack of the necessary equipment for the preparatory process is a contributing factor to this barrier. To improve access to microfluidic systems, we present the development, characterization, and implementation of a microfluidics assembly and packaging process that builds on self-priming point-of-care principles to achieve "ready-to-use microfluidics."
We present results from domestic and international collaborations using novel microfluidic architectures prepared with a unique packaging protocol. We implement this approach by focusing primarily on filamentous fungi; we also demonstrate the utility of this approach for collaborations on plants and neurons. In this work we (1) determine the shelf-life of ready-to-use microfluidics, (2) demonstrate biofilm-like colonization on fungi, (3) describe bacterial motility on fungal hyphae (fungal highway), (4) report material-dependent bacterial-fungal colonization, (5) demonstrate germination of vacuum-sealed
seeds in microfluidics stored for up to 2 weeks, and (6) observe bidirectional cytoplasmic streaming in fungi.
This pre-packaging approach provides a simple, one step process to initiate microfluidics in any setting for fungal studies, bacteria-fungal interactions, and other biological inquiries. This process improves access to microfluidics for controlling biological microenvironments, and further enabling visual and quantitative analysis of fungal cultures.</abstract><cop>England</cop><pub>BioMed Central</pub><pmid>31198578</pmid><doi>10.1186/s40694-019-0071-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4856-8343</orcidid><orcidid>https://orcid.org/0000-0001-8534-1979</orcidid><orcidid>https://orcid.org/0000-0001-6443-2505</orcidid><orcidid>https://orcid.org/0000-0003-0368-2054</orcidid><orcidid>https://orcid.org/0000-0001-6266-5241</orcidid><orcidid>https://orcid.org/0000000185341979</orcidid><orcidid>https://orcid.org/0000000303682054</orcidid><orcidid>https://orcid.org/0000000348568343</orcidid><orcidid>https://orcid.org/0000000164432505</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2054-3085 |
ispartof | Fungal biology and biotechnology, 2019-06, Vol.6 (1), p.1-14, Article 8 |
issn | 2054-3085 2054-3085 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_8fa8ae9bde734a0dbe83d3e05327f99a |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Access control Arabidopsis Assembling Bacteria Bacterial-fungal interactions Bacteriology BASIC BIOLOGICAL SCIENCES Biofilms Biological activity Biology Cell culture Cellular structure Colonization Cytoplasmic streaming Design Dynamic structural analysis Ecology, environment Fermentation Fungi Germination Hyphae Image resolution Life Sciences Microbiology and Parasitology Microenvironments Microfluidics Mycology Packaging Plant root Priming Quantitative analysis Seeds Shelf life Symbiosis Vacuum |
title | Increasing access to microfluidics for studying fungi and other branched biological structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20access%20to%20microfluidics%20for%20studying%20fungi%20and%20other%20branched%20biological%20structures&rft.jtitle=Fungal%20biology%20and%20biotechnology&rft.au=Millet,%20Larry%20J&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-06-10&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=8&rft.issn=2054-3085&rft.eissn=2054-3085&rft_id=info:doi/10.1186/s40694-019-0071-z&rft_dat=%3Cproquest_doaj_%3E2242813367%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414z-981753ad835d0ff3fe650b333da1b43b7d6b891227ab7d357800d831ff6456563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2243037536&rft_id=info:pmid/31198578&rfr_iscdi=true |