Loading…

Determining the validity of cumulant expansions for central spin models

For a model with many-to-one connectivity it is widely expected that mean-field theory captures the exact many-particle N→∞ limit, and that higher-order cumulant expansions of the Heisenberg equations converge to this same limit whilst providing improved approximations at finite N. Here we show that...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research 2023-09, Vol.5 (3), p.033148, Article 033148
Main Authors: Fowler-Wright, Piper, Arnardóttir, Kristín B., Kirton, Peter, Lovett, Brendon W., Keeling, Jonathan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2908-6958e82c835b3d849e4bb3ee38fbdc88d62e75eb8f5926e437509f5a9d36da983
cites cdi_FETCH-LOGICAL-c2908-6958e82c835b3d849e4bb3ee38fbdc88d62e75eb8f5926e437509f5a9d36da983
container_end_page
container_issue 3
container_start_page 033148
container_title Physical review research
container_volume 5
creator Fowler-Wright, Piper
Arnardóttir, Kristín B.
Kirton, Peter
Lovett, Brendon W.
Keeling, Jonathan
description For a model with many-to-one connectivity it is widely expected that mean-field theory captures the exact many-particle N→∞ limit, and that higher-order cumulant expansions of the Heisenberg equations converge to this same limit whilst providing improved approximations at finite N. Here we show that this is in fact not always the case. Instead, whether mean-field theory correctly describes the large-N limit depends on how the model parameters scale with N, and the convergence of cumulant expansions may be nonuniform across even and odd orders. Further, even when a higher-order cumulant expansion does recover the correct limit, the error is not monotonic with N and may exceed that of mean-field theory.
doi_str_mv 10.1103/PhysRevResearch.5.033148
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_8fc8838dcec748408dbf59a04a59da19</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_8fc8838dcec748408dbf59a04a59da19</doaj_id><sourcerecordid>oai_doaj_org_article_8fc8838dcec748408dbf59a04a59da19</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2908-6958e82c835b3d849e4bb3ee38fbdc88d62e75eb8f5926e437509f5a9d36da983</originalsourceid><addsrcrecordid>eNpd0M1KAzEQwPEgCpbad8gLbE02yXZylKq1IChFzyGbTNqU_SjJtti3t1oR8TTDMPwOf0IoZ1POmbh93RzzCg8rzGiT20zVlAnBJVyQUVlJUXBVycs_-zWZ5LxljJWKn97UiCzuccDUxi52azpskB5sE30cjrQP1O3bfWO7geLHznY59l2moU_UYTck29C8ix1te49NviFXwTYZJz9zTN4fH97mT8Xzy2I5v3suXKkZFJVWgFA6EKoWHqRGWdcCUUCovQPwVYkzhTUEpcsKpZgppoOy2ovKWw1iTJZn1_d2a3YptjYdTW-j-T70aW1sGqJr0EA4gQK8QzeTIBn4-qRaJq3S3nJ9suBsudTnnDD8epyZr77mX1-jzLmv-AReX3Pn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determining the validity of cumulant expansions for central spin models</title><source>Directory of Open Access Journals</source><creator>Fowler-Wright, Piper ; Arnardóttir, Kristín B. ; Kirton, Peter ; Lovett, Brendon W. ; Keeling, Jonathan</creator><creatorcontrib>Fowler-Wright, Piper ; Arnardóttir, Kristín B. ; Kirton, Peter ; Lovett, Brendon W. ; Keeling, Jonathan</creatorcontrib><description>For a model with many-to-one connectivity it is widely expected that mean-field theory captures the exact many-particle N→∞ limit, and that higher-order cumulant expansions of the Heisenberg equations converge to this same limit whilst providing improved approximations at finite N. Here we show that this is in fact not always the case. Instead, whether mean-field theory correctly describes the large-N limit depends on how the model parameters scale with N, and the convergence of cumulant expansions may be nonuniform across even and odd orders. Further, even when a higher-order cumulant expansion does recover the correct limit, the error is not monotonic with N and may exceed that of mean-field theory.</description><identifier>ISSN: 2643-1564</identifier><identifier>EISSN: 2643-1564</identifier><identifier>DOI: 10.1103/PhysRevResearch.5.033148</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>Physical review research, 2023-09, Vol.5 (3), p.033148, Article 033148</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2908-6958e82c835b3d849e4bb3ee38fbdc88d62e75eb8f5926e437509f5a9d36da983</citedby><cites>FETCH-LOGICAL-c2908-6958e82c835b3d849e4bb3ee38fbdc88d62e75eb8f5926e437509f5a9d36da983</cites><orcidid>0000-0001-5142-9585 ; 0000-0002-6624-2307 ; 0000-0002-3915-1098 ; 0000-0003-1060-445X ; 0000-0002-4283-552X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Fowler-Wright, Piper</creatorcontrib><creatorcontrib>Arnardóttir, Kristín B.</creatorcontrib><creatorcontrib>Kirton, Peter</creatorcontrib><creatorcontrib>Lovett, Brendon W.</creatorcontrib><creatorcontrib>Keeling, Jonathan</creatorcontrib><title>Determining the validity of cumulant expansions for central spin models</title><title>Physical review research</title><description>For a model with many-to-one connectivity it is widely expected that mean-field theory captures the exact many-particle N→∞ limit, and that higher-order cumulant expansions of the Heisenberg equations converge to this same limit whilst providing improved approximations at finite N. Here we show that this is in fact not always the case. Instead, whether mean-field theory correctly describes the large-N limit depends on how the model parameters scale with N, and the convergence of cumulant expansions may be nonuniform across even and odd orders. Further, even when a higher-order cumulant expansion does recover the correct limit, the error is not monotonic with N and may exceed that of mean-field theory.</description><issn>2643-1564</issn><issn>2643-1564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpd0M1KAzEQwPEgCpbad8gLbE02yXZylKq1IChFzyGbTNqU_SjJtti3t1oR8TTDMPwOf0IoZ1POmbh93RzzCg8rzGiT20zVlAnBJVyQUVlJUXBVycs_-zWZ5LxljJWKn97UiCzuccDUxi52azpskB5sE30cjrQP1O3bfWO7geLHznY59l2moU_UYTck29C8ix1te49NviFXwTYZJz9zTN4fH97mT8Xzy2I5v3suXKkZFJVWgFA6EKoWHqRGWdcCUUCovQPwVYkzhTUEpcsKpZgppoOy2ovKWw1iTJZn1_d2a3YptjYdTW-j-T70aW1sGqJr0EA4gQK8QzeTIBn4-qRaJq3S3nJ9suBsudTnnDD8epyZr77mX1-jzLmv-AReX3Pn</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Fowler-Wright, Piper</creator><creator>Arnardóttir, Kristín B.</creator><creator>Kirton, Peter</creator><creator>Lovett, Brendon W.</creator><creator>Keeling, Jonathan</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5142-9585</orcidid><orcidid>https://orcid.org/0000-0002-6624-2307</orcidid><orcidid>https://orcid.org/0000-0002-3915-1098</orcidid><orcidid>https://orcid.org/0000-0003-1060-445X</orcidid><orcidid>https://orcid.org/0000-0002-4283-552X</orcidid></search><sort><creationdate>20230901</creationdate><title>Determining the validity of cumulant expansions for central spin models</title><author>Fowler-Wright, Piper ; Arnardóttir, Kristín B. ; Kirton, Peter ; Lovett, Brendon W. ; Keeling, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2908-6958e82c835b3d849e4bb3ee38fbdc88d62e75eb8f5926e437509f5a9d36da983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fowler-Wright, Piper</creatorcontrib><creatorcontrib>Arnardóttir, Kristín B.</creatorcontrib><creatorcontrib>Kirton, Peter</creatorcontrib><creatorcontrib>Lovett, Brendon W.</creatorcontrib><creatorcontrib>Keeling, Jonathan</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fowler-Wright, Piper</au><au>Arnardóttir, Kristín B.</au><au>Kirton, Peter</au><au>Lovett, Brendon W.</au><au>Keeling, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining the validity of cumulant expansions for central spin models</atitle><jtitle>Physical review research</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>5</volume><issue>3</issue><spage>033148</spage><pages>033148-</pages><artnum>033148</artnum><issn>2643-1564</issn><eissn>2643-1564</eissn><abstract>For a model with many-to-one connectivity it is widely expected that mean-field theory captures the exact many-particle N→∞ limit, and that higher-order cumulant expansions of the Heisenberg equations converge to this same limit whilst providing improved approximations at finite N. Here we show that this is in fact not always the case. Instead, whether mean-field theory correctly describes the large-N limit depends on how the model parameters scale with N, and the convergence of cumulant expansions may be nonuniform across even and odd orders. Further, even when a higher-order cumulant expansion does recover the correct limit, the error is not monotonic with N and may exceed that of mean-field theory.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevResearch.5.033148</doi><orcidid>https://orcid.org/0000-0001-5142-9585</orcidid><orcidid>https://orcid.org/0000-0002-6624-2307</orcidid><orcidid>https://orcid.org/0000-0002-3915-1098</orcidid><orcidid>https://orcid.org/0000-0003-1060-445X</orcidid><orcidid>https://orcid.org/0000-0002-4283-552X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2643-1564
ispartof Physical review research, 2023-09, Vol.5 (3), p.033148, Article 033148
issn 2643-1564
2643-1564
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_8fc8838dcec748408dbf59a04a59da19
source Directory of Open Access Journals
title Determining the validity of cumulant expansions for central spin models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20the%20validity%20of%20cumulant%20expansions%20for%20central%20spin%20models&rft.jtitle=Physical%20review%20research&rft.au=Fowler-Wright,%20Piper&rft.date=2023-09-01&rft.volume=5&rft.issue=3&rft.spage=033148&rft.pages=033148-&rft.artnum=033148&rft.issn=2643-1564&rft.eissn=2643-1564&rft_id=info:doi/10.1103/PhysRevResearch.5.033148&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_8fc8838dcec748408dbf59a04a59da19%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2908-6958e82c835b3d849e4bb3ee38fbdc88d62e75eb8f5926e437509f5a9d36da983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true