Loading…

Combined Optical Fiber Transmission System Based on QNSC and BER-LM

A quantum noise stream cipher (QNSC) is a physical layer encryption technology based on quantum noise. Bit error rate loopback measurement (BER-LM) is a method to measure the BER of a loopback channel and extract channel characteristics. Then, channel characteristics can be extracted, and consensus...

Full description

Saved in:
Bibliographic Details
Published in:Photonics 2023-02, Vol.10 (2), p.154
Main Authors: Yang, Xiaokun, Wang, Xiangqing, Wang, Dongfei, Zhang, Lan, Yang, Zufang, Zhu, Han, Wu, Baohong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A quantum noise stream cipher (QNSC) is a physical layer encryption technology based on quantum noise. Bit error rate loopback measurement (BER-LM) is a method to measure the BER of a loopback channel and extract channel characteristics. Then, channel characteristics can be extracted, and consensus keys can be obtained through negotiation. In previous studies, encryption and key distribution were implemented in independent channels. In this paper, we propose a scheme that combines these two technologies in a single fiber channel to achieve encrypted transmission and key distribution. We verified a 20 Gbps QPSK coherent optical transmission system with a PSK/QNSC scheme. The results show that by reasonably setting the negotiation bit position, the consensus key could be obtained through negotiation, and the requirements of transmission performance could be met. When the negotiation bit position was set to seven, the Q-factor of the system was nine, which met the error-free condition of the 7% forward error correction (FEC) limit.
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics10020154