Loading…

Hydrophobic Two-Dimensional MoS2 Nanosheets Embedded in a Polyether Copolymer Block Amide (PEBA) Membrane for Recovering Pyridine from a Dilute Solution

A two-dimensional molybdenum disulfide (MoS2) nanosheet, as a new type of inorganic material with high hydrophobicity and excellent physicochemical stability, holds great application potential in the preparation of a high separation performance organic–inorganic hybrid membrane. In this work, high h...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2021-02, Vol.6 (4), p.2675-2685
Main Authors: Fang, Li Jun, Chen, Jian Hua, Wang, Jing Mei, Lin, Wei Wei, Lin, Xiao Gen, Lin, Qiao Jing, He, YaSan
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A two-dimensional molybdenum disulfide (MoS2) nanosheet, as a new type of inorganic material with high hydrophobicity and excellent physicochemical stability, holds great application potential in the preparation of a high separation performance organic–inorganic hybrid membrane. In this work, high hydrophobic MoS2 was embedded in hydrophobic polyether copolymer block amide (PEBA) to prepare PEBA/MoS2 organic–inorganic hybrid membranes. The structure, morphology, and hydrophobicity of the hybrid membrane were characterized by scanning electron microscopy, thermogravimetric analysis, contact angle goniometry, X-ray diffraction, infrared spectroscopy analysis, and atomic force microscopy. The effect of embedding of MoS2 on the swelling degree and pervaporation separation performance of the PEBA/MoS2 hybrid membrane was studied with a 1.0 wt % pyridine dilute solution. The results indicated that with increasing the MoS2 content, the separation factor of PEBA/MoS2 increased first and then decreased, while it showed a downward trend in the permeation flux. When the MoS2 content in the PEBA/MoS2 hybrid membrane was 10.0 wt %, the permeation flux was 83.4 g m–2 h–1 (decreased by 21.5% compared with the pure PEBA membrane), and the separation factor reached a maximum value of 11.11 (increased by 37.6% compared with the pure PEBA membrane). Meanwhile, the effects of feed temperature on the pervaporation separation performance of PEBA/MoS2 hybrid membranes were also studied. In addition, as the PEBA/MoS2 hybrid membrane has excellent thermal stability, it is expected to be a promising material for recovering pyridine from wastewater.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.0c04852