Loading…

Ultra-Wideband and Wide-Angle Perfect Solar Energy Absorber Based on Titanium and Silicon Dioxide Colloidal Nanoarray Structure

In this paper, we designed an ultra-wideband solar energy absorber and approved it numerically by the finite-difference time-domain simulation. The designed solar energy absorber can achieve a high absorption of more than 90% of light in a continuous 3.506 μm (0.596 μm-4.102 μm) wavelength range. Th...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-08, Vol.11 (8), p.2040
Main Authors: Wu, Pinghui, Wei, Kaihua, Xu, Danyang, Chen, Musheng, Zeng, Yongxi, Jian, Ronghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we designed an ultra-wideband solar energy absorber and approved it numerically by the finite-difference time-domain simulation. The designed solar energy absorber can achieve a high absorption of more than 90% of light in a continuous 3.506 μm (0.596 μm-4.102 μm) wavelength range. The basic structure of the absorber is based on silicon dioxide colloidal crystal and Ti. Since the materials have a high melting point, the designed solar energy absorber can work normally under high temperature, and the structure of this solar energy absorber is simpler than most solar energy absorbers fabricated with traditional metal. In the entire wavelength band researched, the average absorption of the colloidal crystal-based solar energy absorber is as high as 94.3%, demonstrating an excellent performance under the incidence light of AM 1.5 solar spectrum. In the meantime, the absorption spectrum of the solar energy absorber is insensitive to the polarization of light. In comparison to other similar structures, our designed solar energy absorber has various advantages, such as its high absorption in a wide spectrum range and that it is low cost and easy to make.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11082040