Loading…

Active and Intelligent Packaging for Enhancing Modified Atmospheres and Monitoring Quality and Shelf Life of Packed Gilthead Seabream Fillets at Isothermal and Variable Temperature Conditions

The study investigated the effect of active modified atmosphere packaging (20% CO2–60% N2–20% O2) with CO2 emitters (MAP-PAD) and conventional MAP (MAP) on the quality and shelf-life of gilthead seabream fillets during chill storage, while the most appropriate enzymatic Time Temperature Integrators...

Full description

Saved in:
Bibliographic Details
Published in:Foods 2022-07, Vol.11 (15), p.2245
Main Authors: Katsouli, Maria, Semenoglou, Ioanna, Kotsiri, Mado, Gogou, Eleni, Tsironi, Theofania, Taoukis, Petros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The study investigated the effect of active modified atmosphere packaging (20% CO2–60% N2–20% O2) with CO2 emitters (MAP-PAD) and conventional MAP (MAP) on the quality and shelf-life of gilthead seabream fillets during chill storage, while the most appropriate enzymatic Time Temperature Integrators (TTI) were selected for monitoring their shelf-life at isothermal and variable temperature storage conditions (Teff = 4.8 °C). The concentration of CO2 and O2 in the headspace of the package, volatile compounds and of the microbial population were monitored during storage. The kinetic parameters for bacterial growth were estimated at 0–10 °C using the Baranyi growth model. The MAP-PAD samples presented significantly lower microbial growth rates and longer lag phases compared to the MAP samples, leading to significant shelf-life extension: 2 days of extension at 2.5 °C and 5 °C, while 50% extension at variable conditions (Teff = 4.8 °C). CO2 emitters in the package improved the chemical freshness (K-values) and volatile compounds (characterizing freshness). The responses of different enzymatic TTI were modeled as the function of enzyme concentration, temperature and storage time. The activation energy (Ea) ranged from 97 to 148 kJ mol−1, allowing the selection of appropriate TTIs for the shelf-life monitoring of each fish product: LP-150U for the MAP and M-25U for the MAP-PAD samples. The validation experiment at Teff = 4.8 °C confirmed the applicability of Arrhenius-type models, as well as the use of TTIs as effective chill chain management tools during distribution and storage.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods11152245