Loading…

Intracellular delivery of antiviral shRNA using penetratin-based complexes effectively inhibits respiratory syncytial virus replication and host cell apoptosis

Cell-penetrating peptides (CPPs) are effective for delivering therapeutic molecules with minimal toxicity. This study focuses on the use of penetratin, a well-characterized CPP, to deliver a DNA vector encoding short hairpin RNA (shRNA) targeting the respiratory syncytial virus (RSV) F gene into inf...

Full description

Saved in:
Bibliographic Details
Published in:Virology journal 2024-09, Vol.21 (1), p.235-17, Article 235
Main Authors: Faghirabadi, Faezeh, Abuei, Haniyeh, Malekzadeh, Mohammad Hossein, Mojiri, Anahita, Farhadi, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell-penetrating peptides (CPPs) are effective for delivering therapeutic molecules with minimal toxicity. This study focuses on the use of penetratin, a well-characterized CPP, to deliver a DNA vector encoding short hairpin RNA (shRNA) targeting the respiratory syncytial virus (RSV) F gene into infected cells. RSV is known to cause severe lower respiratory infections in infants and poses significant risks to immunocompromised individuals and the elderly. We evaluated the antiviral efficacy of the penetratin-shRNA complex by comparing its ability to inhibit RSV replication and induce apoptosis with ribavirin treatment. Penetratin-shRNA complexes were prepared at different ratios and analyzed using gel retardation assays, dynamic light scattering, and zeta potential measurements. The complexes were tested in HEp-2 and A549 cells for transfection efficiency, cytotoxicity, viral load, and apoptosis using plaque assays, real-time reverse transcription-polymerase chain reaction (RT-PCR), DNA fragmentation, propidium iodide staining, and caspase 3/7 activation assays. The gel shift assay determined that a 20:1 CPP-to-shRNA ratio was optimal for effective complexation, resulting in particles with a size of 164 nm and a zeta potential of 8.7 mV. Transfection efficiency in HEp-2 cells was highest at this ratio, reaching up to 93%. The penetratin-shRNA complex effectively silenced the RSV F gene, reduced viral titers, and decreased DNA fragmentation and apoptosis in infected cells. Penetratin effectively delivers shRNA targeting the RSV F gene, significantly reducing viral load and preventing apoptosis without toxicity. This approach surpasses Lipofectamine and shows potential for future therapeutic interventions, especially when combined with ribavirin, against RSV infection.
ISSN:1743-422X
1743-422X
DOI:10.1186/s12985-024-02519-3